Spaces:
Running
Running
File size: 4,163 Bytes
026ee5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# Examples
This page provides examples of using DeepCritical for various research tasks.
## Basic Research Query
### Example 1: Drug Information
**Query**:
```
What are the latest treatments for Alzheimer's disease?
```
**What DeepCritical Does**:
1. Searches PubMed for recent papers
2. Searches ClinicalTrials.gov for active trials
3. Evaluates evidence quality
4. Synthesizes findings into a comprehensive report
### Example 2: Clinical Trial Search
**Query**:
```
What clinical trials are investigating metformin for cancer prevention?
```
**What DeepCritical Does**:
1. Searches ClinicalTrials.gov for relevant trials
2. Searches PubMed for supporting literature
3. Provides trial details and status
4. Summarizes findings
## Advanced Research Queries
### Example 3: Comprehensive Review
**Query**:
```
Review the evidence for using metformin as an anti-aging intervention,
including clinical trials, mechanisms of action, and safety profile.
```
**What DeepCritical Does**:
1. Uses deep research mode (multi-section)
2. Searches multiple sources in parallel
3. Generates sections on:
- Clinical trials
- Mechanisms of action
- Safety profile
4. Synthesizes comprehensive report
### Example 4: Hypothesis Testing
**Query**:
```
Test the hypothesis that regular exercise reduces Alzheimer's disease risk.
```
**What DeepCritical Does**:
1. Generates testable hypotheses
2. Searches for supporting/contradicting evidence
3. Performs statistical analysis (if Modal configured)
4. Provides verdict: SUPPORTED, REFUTED, or INCONCLUSIVE
## MCP Tool Examples
### Using search_pubmed
```
Search PubMed for "CRISPR gene editing cancer therapy"
```
### Using search_clinical_trials
```
Find active clinical trials for "diabetes type 2 treatment"
```
### Using search_all
```
Search all sources for "COVID-19 vaccine side effects"
```
### Using analyze_hypothesis
```
Analyze whether vitamin D supplementation reduces COVID-19 severity
```
## Code Examples
### Python API Usage
```python
from src.orchestrator_factory import create_orchestrator
from src.tools.search_handler import SearchHandler
from src.agent_factory.judges import create_judge_handler
# Create orchestrator
search_handler = SearchHandler()
judge_handler = create_judge_handler()
orchestrator = create_orchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
config={},
mode="advanced"
)
# Run research query
query = "What are the latest treatments for Alzheimer's disease?"
async for event in orchestrator.run(query):
print(f"Event: {event.type} - {event.data}")
```
### Gradio UI Integration
```python
import gradio as gr
from src.app import create_research_interface
# Create interface
interface = create_research_interface()
# Launch
interface.launch(server_name="0.0.0.0", server_port=7860)
```
## Research Patterns
### Iterative Research
Single-loop research with search-judge-synthesize cycles:
```python
from src.orchestrator.research_flow import IterativeResearchFlow
flow = IterativeResearchFlow(
search_handler=search_handler,
judge_handler=judge_handler,
use_graph=False
)
async for event in flow.run(query):
# Handle events
pass
```
### Deep Research
Multi-section parallel research:
```python
from src.orchestrator.research_flow import DeepResearchFlow
flow = DeepResearchFlow(
search_handler=search_handler,
judge_handler=judge_handler,
use_graph=True
)
async for event in flow.run(query):
# Handle events
pass
```
## Configuration Examples
### Basic Configuration
```bash
# .env file
LLM_PROVIDER=openai
OPENAI_API_KEY=your_key_here
MAX_ITERATIONS=10
```
### Advanced Configuration
```bash
# .env file
LLM_PROVIDER=anthropic
ANTHROPIC_API_KEY=your_key_here
EMBEDDING_PROVIDER=local
WEB_SEARCH_PROVIDER=duckduckgo
MAX_ITERATIONS=20
DEFAULT_TOKEN_LIMIT=200000
USE_GRAPH_EXECUTION=true
```
## Next Steps
- Read the [Configuration Guide](../configuration/index.md) for all options
- Explore the [Architecture Documentation](../architecture/graph-orchestration.md)
- Check out the [API Reference](../api/agents.md) for programmatic usage
|