File size: 38,030 Bytes
016b413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
# Phase 5 Implementation Spec: Magentic Integration

**Goal**: Upgrade orchestrator to use Microsoft Agent Framework's Magentic-One pattern.
**Philosophy**: "Same API, Better Engine."
**Prerequisite**: Phase 4 complete (MVP working end-to-end)

---

## 1. Why Magentic?

Magentic-One provides:
- **LLM-powered manager** that dynamically plans, selects agents, tracks progress
- **Built-in stall detection** and automatic replanning
- **Checkpointing** for pause/resume workflows
- **Event streaming** for real-time UI updates
- **Multi-agent coordination** with round limits and reset logic

---

## 2. Critical Architecture Understanding

### 2.1 How Magentic Actually Works

```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                        MagenticBuilder Workflow                          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                          β”‚
β”‚  User Task: "Research drug repurposing for metformin alzheimer"          β”‚
β”‚                              ↓                                           β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                   StandardMagenticManager                         β”‚   β”‚
β”‚  β”‚                                                                   β”‚   β”‚
β”‚  β”‚  1. plan() β†’ LLM generates facts & plan                          β”‚   β”‚
β”‚  β”‚  2. create_progress_ledger() β†’ LLM decides:                      β”‚   β”‚
β”‚  β”‚     - is_request_satisfied?                                       β”‚   β”‚
β”‚  β”‚     - next_speaker: "searcher"                                    β”‚   β”‚
β”‚  β”‚     - instruction_or_question: "Search for clinical trials..."   β”‚   β”‚
β”‚  β”‚                                                                   β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                              ↓                                           β”‚
β”‚           NATURAL LANGUAGE INSTRUCTION sent to agent                     β”‚
β”‚           "Search for clinical trials about metformin..."                β”‚
β”‚                              ↓                                           β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                      ChatAgent (searcher)                         β”‚   β”‚
β”‚  β”‚                                                                   β”‚   β”‚
β”‚  β”‚  chat_client (INTERNAL LLM) ← understands instruction            β”‚   β”‚
β”‚  β”‚         ↓                                                         β”‚   β”‚
β”‚  β”‚  "I'll search for metformin alzheimer clinical trials"           β”‚   β”‚
β”‚  β”‚         ↓                                                         β”‚   β”‚
β”‚  β”‚  tools=[search_pubmed, search_clinicaltrials] ← calls tools      β”‚   β”‚
β”‚  β”‚         ↓                                                         β”‚   β”‚
β”‚  β”‚  Returns natural language response to manager                     β”‚   β”‚
β”‚  β”‚                                                                   β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                              ↓                                           β”‚
β”‚                    Manager evaluates response                            β”‚
β”‚                    Decides next agent or completion                      β”‚
β”‚                                                                          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

### 2.2 The Critical Insight

**Microsoft's ChatAgent has an INTERNAL LLM (`chat_client`) that:**
1. Receives natural language instructions from the manager
2. Understands what action to take
3. Calls attached tools (functions)
4. Returns natural language responses

**Our previous implementation was WRONG because:**
- We wrapped handlers as bare `BaseAgent` subclasses
- No internal LLM to understand instructions
- Raw instruction text was passed directly to APIs (PubMed doesn't understand "Search for clinical trials...")

### 2.3 Correct Pattern: ChatAgent with Tools

```python
# CORRECT: Agent backed by LLM that calls tools
from agent_framework import ChatAgent, AIFunction
from agent_framework.openai import OpenAIChatClient

# Define tool that ChatAgent can call
@AIFunction
async def search_pubmed(query: str, max_results: int = 10) -> str:
    """Search PubMed for biomedical literature.

    Args:
        query: Search keywords (e.g., "metformin alzheimer mechanism")
        max_results: Maximum number of results to return
    """
    result = await pubmed_tool.search(query, max_results)
    return format_results(result)

# ChatAgent with internal LLM + tools
search_agent = ChatAgent(
    name="SearchAgent",
    description="Searches biomedical databases for drug repurposing evidence",
    instructions="You search PubMed, ClinicalTrials.gov, and bioRxiv for evidence.",
    chat_client=OpenAIChatClient(model_id="gpt-4o-mini"),  # INTERNAL LLM
    tools=[search_pubmed, search_clinicaltrials, search_biorxiv],  # TOOLS
)
```

---

## 3. Correct Implementation

### 3.1 Shared State Module (`src/agents/state.py`)

**CRITICAL**: Tools must update shared state so:
1. EmbeddingService can deduplicate across searches
2. ReportAgent can access structured Evidence objects for citations

```python
"""Shared state for Magentic agents.

This module provides global state that tools update as a side effect.
ChatAgent tools return strings to the LLM, but also update this state
for semantic deduplication and structured citation access.
"""
from __future__ import annotations

from typing import TYPE_CHECKING

import structlog

if TYPE_CHECKING:
    from src.services.embeddings import EmbeddingService

from src.utils.models import Evidence

logger = structlog.get_logger()


class MagenticState:
    """Shared state container for Magentic workflow.

    Maintains:
    - evidence_store: All collected Evidence objects (for citations)
    - embedding_service: Optional semantic search (for deduplication)
    """

    def __init__(self) -> None:
        self.evidence_store: list[Evidence] = []
        self.embedding_service: EmbeddingService | None = None
        self._seen_urls: set[str] = set()

    def init_embedding_service(self) -> None:
        """Lazy-initialize embedding service if available."""
        if self.embedding_service is not None:
            return
        try:
            from src.services.embeddings import get_embedding_service
            self.embedding_service = get_embedding_service()
            logger.info("Embedding service enabled for Magentic mode")
        except Exception as e:
            logger.warning("Embedding service unavailable", error=str(e))

    async def add_evidence(self, evidence_list: list[Evidence]) -> list[Evidence]:
        """Add evidence with semantic deduplication.

        Args:
            evidence_list: New evidence from search

        Returns:
            List of unique evidence (not duplicates)
        """
        if not evidence_list:
            return []

        # URL-based deduplication first (fast)
        url_unique = [
            e for e in evidence_list
            if e.citation.url not in self._seen_urls
        ]

        # Semantic deduplication if available
        if self.embedding_service and url_unique:
            try:
                unique = await self.embedding_service.deduplicate(url_unique, threshold=0.85)
                logger.info(
                    "Semantic deduplication",
                    before=len(url_unique),
                    after=len(unique),
                )
            except Exception as e:
                logger.warning("Deduplication failed, using URL-based", error=str(e))
                unique = url_unique
        else:
            unique = url_unique

        # Update state
        for e in unique:
            self._seen_urls.add(e.citation.url)
            self.evidence_store.append(e)

        return unique

    async def search_related(self, query: str, n_results: int = 5) -> list[Evidence]:
        """Find semantically related evidence from vector store.

        Args:
            query: Search query
            n_results: Number of related items

        Returns:
            Related Evidence objects (reconstructed from vector store)
        """
        if not self.embedding_service:
            return []

        try:
            from src.utils.models import Citation

            related = await self.embedding_service.search_similar(query, n_results)
            evidence = []

            for item in related:
                if item["id"] in self._seen_urls:
                    continue  # Already in results

                meta = item.get("metadata", {})
                authors_str = meta.get("authors", "")
                authors = [a.strip() for a in authors_str.split(",") if a.strip()]

                ev = Evidence(
                    content=item["content"],
                    citation=Citation(
                        title=meta.get("title", "Related Evidence"),
                        url=item["id"],
                        source=meta.get("source", "pubmed"),
                        date=meta.get("date", "n.d."),
                        authors=authors,
                    ),
                    relevance=max(0.0, 1.0 - item.get("distance", 0.5)),
                )
                evidence.append(ev)

            return evidence
        except Exception as e:
            logger.warning("Related search failed", error=str(e))
            return []

    def reset(self) -> None:
        """Reset state for new workflow run."""
        self.evidence_store.clear()
        self._seen_urls.clear()


# Global singleton for workflow
_state: MagenticState | None = None


def get_magentic_state() -> MagenticState:
    """Get or create the global Magentic state."""
    global _state
    if _state is None:
        _state = MagenticState()
    return _state


def reset_magentic_state() -> None:
    """Reset state for a fresh workflow run."""
    global _state
    if _state is not None:
        _state.reset()
    else:
        _state = MagenticState()
```

### 3.2 Tool Functions (`src/agents/tools.py`)

Tools call APIs AND update shared state. Return strings to LLM, but also store structured Evidence.

```python
"""Tool functions for Magentic agents.

IMPORTANT: These tools do TWO things:
1. Return formatted strings to the ChatAgent's internal LLM
2. Update shared state (evidence_store, embeddings) as a side effect

This preserves semantic deduplication and structured citation access.
"""
from agent_framework import AIFunction

from src.agents.state import get_magentic_state
from src.tools.biorxiv import BioRxivTool
from src.tools.clinicaltrials import ClinicalTrialsTool
from src.tools.pubmed import PubMedTool

# Singleton tool instances
_pubmed = PubMedTool()
_clinicaltrials = ClinicalTrialsTool()
_biorxiv = BioRxivTool()


def _format_results(results: list, source_name: str, query: str) -> str:
    """Format search results for LLM consumption."""
    if not results:
        return f"No {source_name} results found for: {query}"

    output = [f"Found {len(results)} {source_name} results:\n"]
    for i, r in enumerate(results[:10], 1):
        output.append(f"{i}. **{r.citation.title}**")
        output.append(f"   Source: {r.citation.source} | Date: {r.citation.date}")
        output.append(f"   {r.content[:300]}...")
        output.append(f"   URL: {r.citation.url}\n")

    return "\n".join(output)


@AIFunction
async def search_pubmed(query: str, max_results: int = 10) -> str:
    """Search PubMed for biomedical research papers.

    Use this tool to find peer-reviewed scientific literature about
    drugs, diseases, mechanisms of action, and clinical studies.

    Args:
        query: Search keywords (e.g., "metformin alzheimer mechanism")
        max_results: Maximum results to return (default 10)

    Returns:
        Formatted list of papers with titles, abstracts, and citations
    """
    # 1. Execute search
    results = await _pubmed.search(query, max_results)

    # 2. Update shared state (semantic dedup + evidence store)
    state = get_magentic_state()
    unique = await state.add_evidence(results)

    # 3. Also get related evidence from vector store
    related = await state.search_related(query, n_results=3)
    if related:
        await state.add_evidence(related)

    # 4. Return formatted string for LLM
    total_new = len(unique)
    total_stored = len(state.evidence_store)

    output = _format_results(results, "PubMed", query)
    output += f"\n[State: {total_new} new, {total_stored} total in evidence store]"

    if related:
        output += f"\n[Also found {len(related)} semantically related items from previous searches]"

    return output


@AIFunction
async def search_clinical_trials(query: str, max_results: int = 10) -> str:
    """Search ClinicalTrials.gov for clinical studies.

    Use this tool to find ongoing and completed clinical trials
    for drug repurposing candidates.

    Args:
        query: Search terms (e.g., "metformin cancer phase 3")
        max_results: Maximum results to return (default 10)

    Returns:
        Formatted list of clinical trials with status and details
    """
    # 1. Execute search
    results = await _clinicaltrials.search(query, max_results)

    # 2. Update shared state
    state = get_magentic_state()
    unique = await state.add_evidence(results)

    # 3. Return formatted string
    total_new = len(unique)
    total_stored = len(state.evidence_store)

    output = _format_results(results, "ClinicalTrials.gov", query)
    output += f"\n[State: {total_new} new, {total_stored} total in evidence store]"

    return output


@AIFunction
async def search_preprints(query: str, max_results: int = 10) -> str:
    """Search bioRxiv/medRxiv for preprint papers.

    Use this tool to find the latest research that hasn't been
    peer-reviewed yet. Good for cutting-edge findings.

    Args:
        query: Search terms (e.g., "long covid treatment")
        max_results: Maximum results to return (default 10)

    Returns:
        Formatted list of preprints with abstracts and links
    """
    # 1. Execute search
    results = await _biorxiv.search(query, max_results)

    # 2. Update shared state
    state = get_magentic_state()
    unique = await state.add_evidence(results)

    # 3. Return formatted string
    total_new = len(unique)
    total_stored = len(state.evidence_store)

    output = _format_results(results, "bioRxiv/medRxiv", query)
    output += f"\n[State: {total_new} new, {total_stored} total in evidence store]"

    return output


@AIFunction
async def get_evidence_summary() -> str:
    """Get summary of all collected evidence.

    Use this tool when you need to review what evidence has been collected
    before making an assessment or generating a report.

    Returns:
        Summary of evidence store with counts and key citations
    """
    state = get_magentic_state()
    evidence = state.evidence_store

    if not evidence:
        return "No evidence collected yet."

    # Group by source
    by_source: dict[str, list] = {}
    for e in evidence:
        src = e.citation.source
        if src not in by_source:
            by_source[src] = []
        by_source[src].append(e)

    output = [f"**Evidence Store Summary** ({len(evidence)} total items)\n"]

    for source, items in by_source.items():
        output.append(f"\n### {source.upper()} ({len(items)} items)")
        for e in items[:5]:  # First 5 per source
            output.append(f"- {e.citation.title[:80]}...")

    return "\n".join(output)


@AIFunction
async def get_bibliography() -> str:
    """Get full bibliography of all collected evidence.

    Use this tool when generating a final report to get properly
    formatted citations for all evidence.

    Returns:
        Numbered bibliography with full citation details
    """
    state = get_magentic_state()
    evidence = state.evidence_store

    if not evidence:
        return "No evidence collected for bibliography."

    output = ["## References\n"]

    for i, e in enumerate(evidence, 1):
        # Format: Authors (Year). Title. Source. URL
        authors = ", ".join(e.citation.authors[:3]) if e.citation.authors else "Unknown"
        if e.citation.authors and len(e.citation.authors) > 3:
            authors += " et al."

        year = e.citation.date[:4] if e.citation.date else "n.d."

        output.append(
            f"{i}. {authors} ({year}). {e.citation.title}. "
            f"*{e.citation.source.upper()}*. [{e.citation.url}]({e.citation.url})"
        )

    return "\n".join(output)
```

### 3.3 ChatAgent-Based Agents (`src/agents/magentic_agents.py`)

```python
"""Magentic-compatible agents using ChatAgent pattern."""
from agent_framework import ChatAgent
from agent_framework.openai import OpenAIChatClient

from src.agents.tools import (
    get_bibliography,
    get_evidence_summary,
    search_clinical_trials,
    search_preprints,
    search_pubmed,
)
from src.utils.config import settings


def create_search_agent(chat_client: OpenAIChatClient | None = None) -> ChatAgent:
    """Create a search agent with internal LLM and search tools.

    Args:
        chat_client: Optional custom chat client. If None, uses default.

    Returns:
        ChatAgent configured for biomedical search
    """
    client = chat_client or OpenAIChatClient(
        model_id="gpt-4o-mini",  # Fast, cheap for tool orchestration
        api_key=settings.openai_api_key,
    )

    return ChatAgent(
        name="SearchAgent",
        description="Searches biomedical databases (PubMed, ClinicalTrials.gov, bioRxiv) for drug repurposing evidence",
        instructions="""You are a biomedical search specialist. When asked to find evidence:

1. Analyze the request to determine what to search for
2. Extract key search terms (drug names, disease names, mechanisms)
3. Use the appropriate search tools:
   - search_pubmed for peer-reviewed papers
   - search_clinical_trials for clinical studies
   - search_preprints for cutting-edge findings
4. Summarize what you found and highlight key evidence

Be thorough - search multiple databases when appropriate.
Focus on finding: mechanisms of action, clinical evidence, and specific drug candidates.""",
        chat_client=client,
        tools=[search_pubmed, search_clinical_trials, search_preprints],
        temperature=0.3,  # More deterministic for tool use
    )


def create_judge_agent(chat_client: OpenAIChatClient | None = None) -> ChatAgent:
    """Create a judge agent that evaluates evidence quality.

    Args:
        chat_client: Optional custom chat client. If None, uses default.

    Returns:
        ChatAgent configured for evidence assessment
    """
    client = chat_client or OpenAIChatClient(
        model_id="gpt-4o",  # Better model for nuanced judgment
        api_key=settings.openai_api_key,
    )

    return ChatAgent(
        name="JudgeAgent",
        description="Evaluates evidence quality and determines if sufficient for synthesis",
        instructions="""You are an evidence quality assessor. When asked to evaluate:

1. First, call get_evidence_summary() to see all collected evidence
2. Score on two dimensions (0-10 each):
   - Mechanism Score: How well is the biological mechanism explained?
   - Clinical Score: How strong is the clinical/preclinical evidence?
3. Determine if evidence is SUFFICIENT for a final report:
   - Sufficient: Clear mechanism + supporting clinical data
   - Insufficient: Gaps in mechanism OR weak clinical evidence
4. If insufficient, suggest specific search queries to fill gaps

Be rigorous but fair. Look for:
- Molecular targets and pathways
- Animal model studies
- Human clinical trials
- Safety data
- Drug-drug interactions""",
        chat_client=client,
        tools=[get_evidence_summary],  # Can review collected evidence
        temperature=0.2,  # Consistent judgments
    )


def create_hypothesis_agent(chat_client: OpenAIChatClient | None = None) -> ChatAgent:
    """Create a hypothesis generation agent.

    Args:
        chat_client: Optional custom chat client. If None, uses default.

    Returns:
        ChatAgent configured for hypothesis generation
    """
    client = chat_client or OpenAIChatClient(
        model_id="gpt-4o",
        api_key=settings.openai_api_key,
    )

    return ChatAgent(
        name="HypothesisAgent",
        description="Generates mechanistic hypotheses for drug repurposing",
        instructions="""You are a biomedical hypothesis generator. Based on evidence:

1. Identify the key molecular targets involved
2. Map the biological pathways affected
3. Generate testable hypotheses in this format:

   DRUG β†’ TARGET β†’ PATHWAY β†’ THERAPEUTIC EFFECT

   Example:
   Metformin β†’ AMPK activation β†’ mTOR inhibition β†’ Reduced tau phosphorylation

4. Explain the rationale for each hypothesis
5. Suggest what additional evidence would support or refute it

Focus on mechanistic plausibility and existing evidence.""",
        chat_client=client,
        temperature=0.5,  # Some creativity for hypothesis generation
    )


def create_report_agent(chat_client: OpenAIChatClient | None = None) -> ChatAgent:
    """Create a report synthesis agent.

    Args:
        chat_client: Optional custom chat client. If None, uses default.

    Returns:
        ChatAgent configured for report generation
    """
    client = chat_client or OpenAIChatClient(
        model_id="gpt-4o",
        api_key=settings.openai_api_key,
    )

    return ChatAgent(
        name="ReportAgent",
        description="Synthesizes research findings into structured reports",
        instructions="""You are a scientific report writer. When asked to synthesize:

1. First, call get_evidence_summary() to review all collected evidence
2. Then call get_bibliography() to get properly formatted citations

Generate a structured report with these sections:

## Executive Summary
Brief overview of findings and recommendation

## Methodology
Databases searched, queries used, evidence reviewed

## Key Findings
### Mechanism of Action
- Molecular targets
- Biological pathways
- Proposed mechanism

### Clinical Evidence
- Preclinical studies
- Clinical trials
- Safety profile

## Drug Candidates
List specific drugs with repurposing potential

## Limitations
Gaps in evidence, conflicting data, caveats

## Conclusion
Final recommendation with confidence level

## References
Use the output from get_bibliography() - do not make up citations!

Be comprehensive but concise. Cite evidence for all claims.""",
        chat_client=client,
        tools=[get_evidence_summary, get_bibliography],  # Access to collected evidence
        temperature=0.3,
    )
```

### 3.4 Magentic Orchestrator (`src/orchestrator_magentic.py`)

```python
"""Magentic-based orchestrator using ChatAgent pattern."""
from collections.abc import AsyncGenerator
from typing import Any

import structlog
from agent_framework import (
    MagenticAgentDeltaEvent,
    MagenticAgentMessageEvent,
    MagenticBuilder,
    MagenticFinalResultEvent,
    MagenticOrchestratorMessageEvent,
    WorkflowOutputEvent,
)
from agent_framework.openai import OpenAIChatClient

from src.agents.magentic_agents import (
    create_hypothesis_agent,
    create_judge_agent,
    create_report_agent,
    create_search_agent,
)
from src.agents.state import get_magentic_state, reset_magentic_state
from src.utils.config import settings
from src.utils.exceptions import ConfigurationError
from src.utils.models import AgentEvent

logger = structlog.get_logger()


class MagenticOrchestrator:
    """
    Magentic-based orchestrator using ChatAgent pattern.

    Each agent has an internal LLM that understands natural language
    instructions from the manager and can call tools appropriately.
    """

    def __init__(
        self,
        max_rounds: int = 10,
        chat_client: OpenAIChatClient | None = None,
    ) -> None:
        """Initialize orchestrator.

        Args:
            max_rounds: Maximum coordination rounds
            chat_client: Optional shared chat client for agents
        """
        if not settings.openai_api_key:
            raise ConfigurationError(
                "Magentic mode requires OPENAI_API_KEY. "
                "Set the key or use mode='simple'."
            )

        self._max_rounds = max_rounds
        self._chat_client = chat_client

    def _build_workflow(self) -> Any:
        """Build the Magentic workflow with ChatAgent participants."""
        # Create agents with internal LLMs
        search_agent = create_search_agent(self._chat_client)
        judge_agent = create_judge_agent(self._chat_client)
        hypothesis_agent = create_hypothesis_agent(self._chat_client)
        report_agent = create_report_agent(self._chat_client)

        # Manager chat client (orchestrates the agents)
        manager_client = OpenAIChatClient(
            model_id="gpt-4o",  # Good model for planning/coordination
            api_key=settings.openai_api_key,
        )

        return (
            MagenticBuilder()
            .participants(
                searcher=search_agent,
                hypothesizer=hypothesis_agent,
                judge=judge_agent,
                reporter=report_agent,
            )
            .with_standard_manager(
                chat_client=manager_client,
                max_round_count=self._max_rounds,
                max_stall_count=3,
                max_reset_count=2,
            )
            .build()
        )

    async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
        """
        Run the Magentic workflow.

        Args:
            query: User's research question

        Yields:
            AgentEvent objects for real-time UI updates
        """
        logger.info("Starting Magentic orchestrator", query=query)

        # CRITICAL: Reset state for fresh workflow run
        reset_magentic_state()

        # Initialize embedding service if available
        state = get_magentic_state()
        state.init_embedding_service()

        yield AgentEvent(
            type="started",
            message=f"Starting research (Magentic mode): {query}",
            iteration=0,
        )

        workflow = self._build_workflow()

        task = f"""Research drug repurposing opportunities for: {query}

Workflow:
1. SearchAgent: Find evidence from PubMed, ClinicalTrials.gov, and bioRxiv
2. HypothesisAgent: Generate mechanistic hypotheses (Drug β†’ Target β†’ Pathway β†’ Effect)
3. JudgeAgent: Evaluate if evidence is sufficient
4. If insufficient β†’ SearchAgent refines search based on gaps
5. If sufficient β†’ ReportAgent synthesizes final report

Focus on:
- Identifying specific molecular targets
- Understanding mechanism of action
- Finding clinical evidence supporting hypotheses

The final output should be a structured research report."""

        iteration = 0
        try:
            async for event in workflow.run_stream(task):
                agent_event = self._process_event(event, iteration)
                if agent_event:
                    if isinstance(event, MagenticAgentMessageEvent):
                        iteration += 1
                    yield agent_event

        except Exception as e:
            logger.error("Magentic workflow failed", error=str(e))
            yield AgentEvent(
                type="error",
                message=f"Workflow error: {e!s}",
                iteration=iteration,
            )

    def _process_event(self, event: Any, iteration: int) -> AgentEvent | None:
        """Process workflow event into AgentEvent."""
        if isinstance(event, MagenticOrchestratorMessageEvent):
            text = event.message.text if event.message else ""
            if text:
                return AgentEvent(
                    type="judging",
                    message=f"Manager ({event.kind}): {text[:200]}...",
                    iteration=iteration,
                )

        elif isinstance(event, MagenticAgentMessageEvent):
            agent_name = event.agent_id or "unknown"
            text = event.message.text if event.message else ""

            event_type = "judging"
            if "search" in agent_name.lower():
                event_type = "search_complete"
            elif "judge" in agent_name.lower():
                event_type = "judge_complete"
            elif "hypothes" in agent_name.lower():
                event_type = "hypothesizing"
            elif "report" in agent_name.lower():
                event_type = "synthesizing"

            return AgentEvent(
                type=event_type,
                message=f"{agent_name}: {text[:200]}...",
                iteration=iteration + 1,
            )

        elif isinstance(event, MagenticFinalResultEvent):
            text = event.message.text if event.message else "No result"
            return AgentEvent(
                type="complete",
                message=text,
                data={"iterations": iteration},
                iteration=iteration,
            )

        elif isinstance(event, MagenticAgentDeltaEvent):
            if event.text:
                return AgentEvent(
                    type="streaming",
                    message=event.text,
                    data={"agent_id": event.agent_id},
                    iteration=iteration,
                )

        elif isinstance(event, WorkflowOutputEvent):
            if event.data:
                return AgentEvent(
                    type="complete",
                    message=str(event.data),
                    iteration=iteration,
                )

        return None
```

### 3.4 Updated Factory (`src/orchestrator_factory.py`)

```python
"""Factory for creating orchestrators."""
from typing import Any, Literal

from src.orchestrator import JudgeHandlerProtocol, Orchestrator, SearchHandlerProtocol
from src.utils.models import OrchestratorConfig


def create_orchestrator(
    search_handler: SearchHandlerProtocol | None = None,
    judge_handler: JudgeHandlerProtocol | None = None,
    config: OrchestratorConfig | None = None,
    mode: Literal["simple", "magentic"] = "simple",
) -> Any:
    """
    Create an orchestrator instance.

    Args:
        search_handler: The search handler (required for simple mode)
        judge_handler: The judge handler (required for simple mode)
        config: Optional configuration
        mode: "simple" for Phase 4 loop, "magentic" for ChatAgent-based multi-agent

    Returns:
        Orchestrator instance

    Note:
        Magentic mode does NOT use search_handler/judge_handler.
        It creates ChatAgent instances with internal LLMs that call tools directly.
    """
    if mode == "magentic":
        try:
            from src.orchestrator_magentic import MagenticOrchestrator

            return MagenticOrchestrator(
                max_rounds=config.max_iterations if config else 10,
            )
        except ImportError:
            # Fallback to simple if agent-framework not installed
            pass

    # Simple mode requires handlers
    if search_handler is None or judge_handler is None:
        raise ValueError("Simple mode requires search_handler and judge_handler")

    return Orchestrator(
        search_handler=search_handler,
        judge_handler=judge_handler,
        config=config,
    )
```

---

## 4. Why This Works

### 4.1 The Manager β†’ Agent Communication

```
Manager LLM decides: "Tell SearchAgent to find clinical trials for metformin"
           ↓
Sends instruction: "Search for clinical trials about metformin and cancer"
           ↓
SearchAgent's INTERNAL LLM receives this
           ↓
Internal LLM understands: "I should call search_clinical_trials('metformin cancer')"
           ↓
Tool executes: ClinicalTrials.gov API
           ↓
Internal LLM formats response: "I found 15 trials. Here are the key ones..."
           ↓
Manager receives natural language response
```

### 4.2 Why Our Old Implementation Failed

```
Manager sends: "Search for clinical trials about metformin..."
           ↓
OLD SearchAgent.run() extracts: query = "Search for clinical trials about metformin..."
           ↓
Passes to PubMed: pubmed.search("Search for clinical trials about metformin...")
           ↓
PubMed doesn't understand English instructions β†’ garbage results or error
```

---

## 5. Directory Structure

```text
src/
β”œβ”€β”€ agents/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ state.py                 # MagenticState (evidence_store + embeddings)
β”‚   β”œβ”€β”€ tools.py                 # AIFunction tool definitions (update state)
β”‚   └── magentic_agents.py       # ChatAgent factory functions
β”œβ”€β”€ services/
β”‚   └── embeddings.py            # EmbeddingService (semantic dedup)
β”œβ”€β”€ orchestrator.py              # Simple mode (unchanged)
β”œβ”€β”€ orchestrator_magentic.py     # Magentic mode with ChatAgents
└── orchestrator_factory.py      # Mode selection
```

---

## 6. Dependencies

```toml
[project.optional-dependencies]
magentic = [
    "agent-framework-core>=1.0.0b",
    "agent-framework-openai>=1.0.0b",  # For OpenAIChatClient
]
embeddings = [
    "chromadb>=0.4.0",
    "sentence-transformers>=2.2.0",
]
```

**IMPORTANT: Magentic mode REQUIRES OpenAI API key.**

The Microsoft Agent Framework's standard manager and ChatAgent use OpenAIChatClient internally.
There is no AnthropicChatClient in the framework. If only `ANTHROPIC_API_KEY` is set:
- `mode="simple"` works fine
- `mode="magentic"` throws `ConfigurationError`

This is enforced in `MagenticOrchestrator.__init__`.

---

## 7. Implementation Checklist

- [ ] Create `src/agents/state.py` with MagenticState class
- [ ] Create `src/agents/tools.py` with AIFunction search tools + state updates
- [ ] Create `src/agents/magentic_agents.py` with ChatAgent factories
- [ ] Rewrite `src/orchestrator_magentic.py` to use ChatAgent pattern
- [ ] Update `src/orchestrator_factory.py` for new signature
- [ ] Test with real OpenAI API
- [ ] Verify manager properly coordinates agents
- [ ] Ensure tools are called with correct parameters
- [ ] Verify semantic deduplication works (evidence_store populates)
- [ ] Verify bibliography generation in final reports

---

## 8. Definition of Done

Phase 5 is **COMPLETE** when:

1. Magentic mode runs without hanging
2. Manager successfully coordinates agents via natural language
3. SearchAgent calls tools with proper search keywords (not raw instructions)
4. JudgeAgent evaluates evidence from conversation history
5. ReportAgent generates structured final report
6. Events stream to UI correctly

---

## 9. Testing Magentic Mode

```bash
# Test with real API
OPENAI_API_KEY=sk-... uv run python -c "
import asyncio
from src.orchestrator_factory import create_orchestrator

async def test():
    orch = create_orchestrator(mode='magentic')
    async for event in orch.run('metformin alzheimer'):
        print(f'[{event.type}] {event.message[:100]}')

asyncio.run(test())
"
```

Expected output:
```
[started] Starting research (Magentic mode): metformin alzheimer
[judging] Manager (plan): I will coordinate the agents to research...
[search_complete] SearchAgent: Found 25 PubMed results for metformin alzheimer...
[hypothesizing] HypothesisAgent: Based on the evidence, I propose...
[judge_complete] JudgeAgent: Mechanism Score: 7/10, Clinical Score: 6/10...
[synthesizing] ReportAgent: ## Executive Summary...
[complete] <full research report>
```

---

## 10. Key Differences from Old Spec

| Aspect | OLD (Wrong) | NEW (Correct) |
|--------|-------------|---------------|
| Agent type | `BaseAgent` subclass | `ChatAgent` with `chat_client` |
| Internal LLM | None | OpenAIChatClient |
| How tools work | Handler.execute(raw_instruction) | LLM understands instruction, calls AIFunction |
| Message handling | Extract text β†’ pass to API | LLM interprets β†’ extracts keywords β†’ calls tool |
| State management | Passed to agent constructors | Global MagenticState singleton |
| Evidence storage | In agent instance | In MagenticState.evidence_store |
| Semantic search | Coupled to agents | Tools call state.add_evidence() |
| Citations for report | From agent's store | Via get_bibliography() tool |

**Key Insights:**
1. Magentic agents must have internal LLMs to understand natural language instructions
2. Tools must update shared state as a side effect (return strings, but also store Evidence)
3. ReportAgent uses `get_bibliography()` tool to access structured citations
4. State is reset at start of each workflow run via `reset_magentic_state()`