File size: 19,923 Bytes
016b413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# Phase 7 Implementation Spec: Hypothesis Agent

**Goal**: Add an agent that generates scientific hypotheses to guide targeted searches.
**Philosophy**: "Don't just find evidenceβ€”understand the mechanisms."
**Prerequisite**: Phase 6 complete (Embeddings working)

---

## 1. Why Hypothesis Agent?

Current limitation: **Search is reactive, not hypothesis-driven.**

Current flow:
1. User asks about "metformin alzheimer"
2. Search finds papers
3. Judge says "need more evidence"
4. Search again with slightly different keywords

With Hypothesis Agent:
1. User asks about "metformin alzheimer"
2. Search finds initial papers
3. **Hypothesis Agent analyzes**: "Evidence suggests metformin β†’ AMPK activation β†’ autophagy β†’ amyloid clearance"
4. Search can now target: "metformin AMPK", "autophagy neurodegeneration", "amyloid clearance drugs"

**Key insight**: Scientific research is hypothesis-driven. The agent should think like a researcher.

---

## 2. Architecture

### Current (Phase 6)
```
User Query β†’ Magentic Manager
                β”œβ”€β”€ SearchAgent β†’ Evidence
                └── JudgeAgent β†’ Sufficient? β†’ Synthesize/Continue
```

### Phase 7
```
User Query β†’ Magentic Manager
                β”œβ”€β”€ SearchAgent β†’ Evidence
                β”œβ”€β”€ HypothesisAgent β†’ Mechanistic Hypotheses  ← NEW
                └── JudgeAgent β†’ Sufficient? β†’ Synthesize/Continue
                       ↑
                  Uses hypotheses to guide next search
```

### Shared Context Enhancement
```python
evidence_store = {
    "current": [],
    "embeddings": {},
    "vector_index": None,
    "hypotheses": [],        # NEW: Generated hypotheses
    "tested_hypotheses": [], # NEW: Hypotheses with supporting/contradicting evidence
}
```

---

## 3. Hypothesis Model

### 3.1 Data Model (`src/utils/models.py`)

```python
class MechanismHypothesis(BaseModel):
    """A scientific hypothesis about drug mechanism."""

    drug: str = Field(description="The drug being studied")
    target: str = Field(description="Molecular target (e.g., AMPK, mTOR)")
    pathway: str = Field(description="Biological pathway affected")
    effect: str = Field(description="Downstream effect on disease")
    confidence: float = Field(ge=0, le=1, description="Confidence in hypothesis")
    supporting_evidence: list[str] = Field(
        default_factory=list,
        description="PMIDs or URLs supporting this hypothesis"
    )
    contradicting_evidence: list[str] = Field(
        default_factory=list,
        description="PMIDs or URLs contradicting this hypothesis"
    )
    search_suggestions: list[str] = Field(
        default_factory=list,
        description="Suggested searches to test this hypothesis"
    )

    def to_search_queries(self) -> list[str]:
        """Generate search queries to test this hypothesis."""
        return [
            f"{self.drug} {self.target}",
            f"{self.target} {self.pathway}",
            f"{self.pathway} {self.effect}",
            *self.search_suggestions
        ]
```

### 3.2 Hypothesis Assessment

```python
class HypothesisAssessment(BaseModel):
    """Assessment of evidence against hypotheses."""

    hypotheses: list[MechanismHypothesis]
    primary_hypothesis: MechanismHypothesis | None = Field(
        description="Most promising hypothesis based on current evidence"
    )
    knowledge_gaps: list[str] = Field(
        description="What we don't know yet"
    )
    recommended_searches: list[str] = Field(
        description="Searches to fill knowledge gaps"
    )
```

---

## 4. Implementation

### 4.0 Text Utilities (`src/utils/text_utils.py`)

> **Why These Utilities?**
>
> The original spec used arbitrary truncation (`evidence[:10]` and `content[:300]`).
> This loses important information randomly. These utilities provide:
> 1. **Sentence-aware truncation** - cuts at sentence boundaries, not mid-word
> 2. **Diverse evidence selection** - uses embeddings to select varied evidence (MMR)

```python
"""Text processing utilities for evidence handling."""
from typing import TYPE_CHECKING

if TYPE_CHECKING:
    from src.services.embeddings import EmbeddingService
    from src.utils.models import Evidence


def truncate_at_sentence(text: str, max_chars: int = 300) -> str:
    """Truncate text at sentence boundary, preserving meaning.

    Args:
        text: The text to truncate
        max_chars: Maximum characters (default 300)

    Returns:
        Text truncated at last complete sentence within limit
    """
    if len(text) <= max_chars:
        return text

    # Find truncation point
    truncated = text[:max_chars]

    # Look for sentence endings: . ! ? followed by space or end
    for sep in ['. ', '! ', '? ', '.\n', '!\n', '?\n']:
        last_sep = truncated.rfind(sep)
        if last_sep > max_chars // 2:  # Don't truncate too aggressively
            return text[:last_sep + 1].strip()

    # Fallback: find last period
    last_period = truncated.rfind('.')
    if last_period > max_chars // 2:
        return text[:last_period + 1].strip()

    # Last resort: truncate at word boundary
    last_space = truncated.rfind(' ')
    if last_space > 0:
        return text[:last_space].strip() + "..."

    return truncated + "..."


async def select_diverse_evidence(
    evidence: list["Evidence"],
    n: int,
    query: str,
    embeddings: "EmbeddingService | None" = None
) -> list["Evidence"]:
    """Select n most diverse and relevant evidence items.

    Uses Maximal Marginal Relevance (MMR) when embeddings available,
    falls back to relevance_score sorting otherwise.

    Args:
        evidence: All available evidence
        n: Number of items to select
        query: Original query for relevance scoring
        embeddings: Optional EmbeddingService for semantic diversity

    Returns:
        Selected evidence items, diverse and relevant
    """
    if not evidence:
        return []

    if n >= len(evidence):
        return evidence

    # Fallback: sort by relevance score if no embeddings
    if embeddings is None:
        return sorted(
            evidence,
            key=lambda e: e.relevance_score,
            reverse=True
        )[:n]

    # MMR: Maximal Marginal Relevance for diverse selection
    # Score = Ξ» * relevance - (1-Ξ») * max_similarity_to_selected
    lambda_param = 0.7  # Balance relevance vs diversity

    # Get query embedding
    query_emb = await embeddings.embed(query)

    # Get all evidence embeddings
    evidence_embs = await embeddings.embed_batch([e.content for e in evidence])

    # Compute relevance scores (cosine similarity to query)
    from numpy import dot
    from numpy.linalg import norm
    cosine = lambda a, b: float(dot(a, b) / (norm(a) * norm(b)))

    relevance_scores = [cosine(query_emb, emb) for emb in evidence_embs]

    # Greedy MMR selection
    selected_indices: list[int] = []
    remaining = set(range(len(evidence)))

    for _ in range(n):
        best_score = float('-inf')
        best_idx = -1

        for idx in remaining:
            # Relevance component
            relevance = relevance_scores[idx]

            # Diversity component: max similarity to already selected
            if selected_indices:
                max_sim = max(
                    cosine(evidence_embs[idx], evidence_embs[sel])
                    for sel in selected_indices
                )
            else:
                max_sim = 0

            # MMR score
            mmr_score = lambda_param * relevance - (1 - lambda_param) * max_sim

            if mmr_score > best_score:
                best_score = mmr_score
                best_idx = idx

        if best_idx >= 0:
            selected_indices.append(best_idx)
            remaining.remove(best_idx)

    return [evidence[i] for i in selected_indices]
```

### 4.1 Hypothesis Prompts (`src/prompts/hypothesis.py`)

```python
"""Prompts for Hypothesis Agent."""
from src.utils.text_utils import truncate_at_sentence, select_diverse_evidence

SYSTEM_PROMPT = """You are a biomedical research scientist specializing in drug repurposing.

Your role is to generate mechanistic hypotheses based on evidence.

A good hypothesis:
1. Proposes a MECHANISM: Drug β†’ Target β†’ Pathway β†’ Effect
2. Is TESTABLE: Can be supported or refuted by literature search
3. Is SPECIFIC: Names actual molecular targets and pathways
4. Generates SEARCH QUERIES: Helps find more evidence

Example hypothesis format:
- Drug: Metformin
- Target: AMPK (AMP-activated protein kinase)
- Pathway: mTOR inhibition β†’ autophagy activation
- Effect: Enhanced clearance of amyloid-beta in Alzheimer's
- Confidence: 0.7
- Search suggestions: ["metformin AMPK brain", "autophagy amyloid clearance"]

Be specific. Use actual gene/protein names when possible."""


async def format_hypothesis_prompt(
    query: str,
    evidence: list,
    embeddings=None
) -> str:
    """Format prompt for hypothesis generation.

    Uses smart evidence selection instead of arbitrary truncation.

    Args:
        query: The research query
        evidence: All collected evidence
        embeddings: Optional EmbeddingService for diverse selection
    """
    # Select diverse, relevant evidence (not arbitrary first 10)
    selected = await select_diverse_evidence(
        evidence, n=10, query=query, embeddings=embeddings
    )

    # Format with sentence-aware truncation
    evidence_text = "\n".join([
        f"- **{e.citation.title}** ({e.citation.source}): {truncate_at_sentence(e.content, 300)}"
        for e in selected
    ])

    return f"""Based on the following evidence about "{query}", generate mechanistic hypotheses.

## Evidence ({len(selected)} papers selected for diversity)
{evidence_text}

## Task
1. Identify potential drug targets mentioned in the evidence
2. Propose mechanism hypotheses (Drug β†’ Target β†’ Pathway β†’ Effect)
3. Rate confidence based on evidence strength
4. Suggest searches to test each hypothesis

Generate 2-4 hypotheses, prioritized by confidence."""
```

### 4.2 Hypothesis Agent (`src/agents/hypothesis_agent.py`)

```python
"""Hypothesis agent for mechanistic reasoning."""
from collections.abc import AsyncIterable
from typing import TYPE_CHECKING, Any

from agent_framework import (
    AgentRunResponse,
    AgentRunResponseUpdate,
    AgentThread,
    BaseAgent,
    ChatMessage,
    Role,
)
from pydantic_ai import Agent

from src.prompts.hypothesis import SYSTEM_PROMPT, format_hypothesis_prompt
from src.utils.config import settings
from src.utils.models import Evidence, HypothesisAssessment

if TYPE_CHECKING:
    from src.services.embeddings import EmbeddingService


class HypothesisAgent(BaseAgent):
    """Generates mechanistic hypotheses based on evidence."""

    def __init__(
        self,
        evidence_store: dict[str, list[Evidence]],
        embedding_service: "EmbeddingService | None" = None,  # NEW: for diverse selection
    ) -> None:
        super().__init__(
            name="HypothesisAgent",
            description="Generates scientific hypotheses about drug mechanisms to guide research",
        )
        self._evidence_store = evidence_store
        self._embeddings = embedding_service  # Used for MMR evidence selection
        self._agent = Agent(
            model=settings.llm_provider,  # Uses configured LLM
            output_type=HypothesisAssessment,
            system_prompt=SYSTEM_PROMPT,
        )

    async def run(
        self,
        messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
        *,
        thread: AgentThread | None = None,
        **kwargs: Any,
    ) -> AgentRunResponse:
        """Generate hypotheses based on current evidence."""
        # Extract query
        query = self._extract_query(messages)

        # Get current evidence
        evidence = self._evidence_store.get("current", [])

        if not evidence:
            return AgentRunResponse(
                messages=[ChatMessage(
                    role=Role.ASSISTANT,
                    text="No evidence available yet. Search for evidence first."
                )],
                response_id="hypothesis-no-evidence",
            )

        # Generate hypotheses with diverse evidence selection
        # NOTE: format_hypothesis_prompt is now async
        prompt = await format_hypothesis_prompt(
            query, evidence, embeddings=self._embeddings
        )
        result = await self._agent.run(prompt)
        assessment = result.output

        # Store hypotheses in shared context
        existing = self._evidence_store.get("hypotheses", [])
        self._evidence_store["hypotheses"] = existing + assessment.hypotheses

        # Format response
        response_text = self._format_response(assessment)

        return AgentRunResponse(
            messages=[ChatMessage(role=Role.ASSISTANT, text=response_text)],
            response_id=f"hypothesis-{len(assessment.hypotheses)}",
            additional_properties={"assessment": assessment.model_dump()},
        )

    def _format_response(self, assessment: HypothesisAssessment) -> str:
        """Format hypothesis assessment as markdown."""
        lines = ["## Generated Hypotheses\n"]

        for i, h in enumerate(assessment.hypotheses, 1):
            lines.append(f"### Hypothesis {i} (Confidence: {h.confidence:.0%})")
            lines.append(f"**Mechanism**: {h.drug} β†’ {h.target} β†’ {h.pathway} β†’ {h.effect}")
            lines.append(f"**Suggested searches**: {', '.join(h.search_suggestions)}\n")

        if assessment.primary_hypothesis:
            lines.append(f"### Primary Hypothesis")
            h = assessment.primary_hypothesis
            lines.append(f"{h.drug} β†’ {h.target} β†’ {h.pathway} β†’ {h.effect}\n")

        if assessment.knowledge_gaps:
            lines.append("### Knowledge Gaps")
            for gap in assessment.knowledge_gaps:
                lines.append(f"- {gap}")

        if assessment.recommended_searches:
            lines.append("\n### Recommended Next Searches")
            for search in assessment.recommended_searches:
                lines.append(f"- `{search}`")

        return "\n".join(lines)

    def _extract_query(self, messages) -> str:
        """Extract query from messages."""
        if isinstance(messages, str):
            return messages
        elif isinstance(messages, ChatMessage):
            return messages.text or ""
        elif isinstance(messages, list):
            for msg in reversed(messages):
                if isinstance(msg, ChatMessage) and msg.role == Role.USER:
                    return msg.text or ""
                elif isinstance(msg, str):
                    return msg
        return ""

    async def run_stream(
        self,
        messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
        *,
        thread: AgentThread | None = None,
        **kwargs: Any,
    ) -> AsyncIterable[AgentRunResponseUpdate]:
        """Streaming wrapper."""
        result = await self.run(messages, thread=thread, **kwargs)
        yield AgentRunResponseUpdate(
            messages=result.messages,
            response_id=result.response_id
        )
```

### 4.3 Update MagenticOrchestrator

Add HypothesisAgent to the workflow:

```python
# In MagenticOrchestrator.__init__
self._hypothesis_agent = HypothesisAgent(self._evidence_store)

# In workflow building
workflow = (
    MagenticBuilder()
    .participants(
        searcher=search_agent,
        hypothesizer=self._hypothesis_agent,  # NEW
        judge=judge_agent,
    )
    .with_standard_manager(...)
    .build()
)

# Update task instruction
task = f"""Research drug repurposing opportunities for: {query}

Workflow:
1. SearchAgent: Find initial evidence from PubMed and web
2. HypothesisAgent: Generate mechanistic hypotheses (Drug β†’ Target β†’ Pathway β†’ Effect)
3. SearchAgent: Use hypothesis-suggested queries for targeted search
4. JudgeAgent: Evaluate if evidence supports hypotheses
5. Repeat until confident or max rounds

Focus on:
- Identifying specific molecular targets
- Understanding mechanism of action
- Finding supporting/contradicting evidence for hypotheses
"""
```

---

## 5. Directory Structure After Phase 7

```
src/
β”œβ”€β”€ agents/
β”‚   β”œβ”€β”€ search_agent.py
β”‚   β”œβ”€β”€ judge_agent.py
β”‚   └── hypothesis_agent.py     # NEW
β”œβ”€β”€ prompts/
β”‚   β”œβ”€β”€ judge.py
β”‚   └── hypothesis.py           # NEW
β”œβ”€β”€ services/
β”‚   └── embeddings.py
└── utils/
    └── models.py               # Updated with hypothesis models
```

---

## 6. Tests

### 6.1 Unit Tests (`tests/unit/agents/test_hypothesis_agent.py`)

```python
"""Unit tests for HypothesisAgent."""
import pytest
from unittest.mock import AsyncMock, MagicMock, patch

from src.agents.hypothesis_agent import HypothesisAgent
from src.utils.models import Citation, Evidence, HypothesisAssessment, MechanismHypothesis


@pytest.fixture
def sample_evidence():
    return [
        Evidence(
            content="Metformin activates AMPK, which inhibits mTOR signaling...",
            citation=Citation(
                source="pubmed",
                title="Metformin and AMPK",
                url="https://pubmed.ncbi.nlm.nih.gov/12345/",
                date="2023"
            )
        )
    ]


@pytest.fixture
def mock_assessment():
    return HypothesisAssessment(
        hypotheses=[
            MechanismHypothesis(
                drug="Metformin",
                target="AMPK",
                pathway="mTOR inhibition",
                effect="Reduced cancer cell proliferation",
                confidence=0.75,
                search_suggestions=["metformin AMPK cancer", "mTOR cancer therapy"]
            )
        ],
        primary_hypothesis=None,
        knowledge_gaps=["Clinical trial data needed"],
        recommended_searches=["metformin clinical trial cancer"]
    )


@pytest.mark.asyncio
async def test_hypothesis_agent_generates_hypotheses(sample_evidence, mock_assessment):
    """HypothesisAgent should generate mechanistic hypotheses."""
    store = {"current": sample_evidence, "hypotheses": []}

    with patch("src.agents.hypothesis_agent.Agent") as MockAgent:
        mock_result = MagicMock()
        mock_result.output = mock_assessment
        MockAgent.return_value.run = AsyncMock(return_value=mock_result)

        agent = HypothesisAgent(store)
        response = await agent.run("metformin cancer")

        assert "AMPK" in response.messages[0].text
        assert len(store["hypotheses"]) == 1


@pytest.mark.asyncio
async def test_hypothesis_agent_no_evidence():
    """HypothesisAgent should handle empty evidence gracefully."""
    store = {"current": [], "hypotheses": []}
    agent = HypothesisAgent(store)

    response = await agent.run("test query")

    assert "No evidence" in response.messages[0].text
```

---

## 7. Definition of Done

Phase 7 is **COMPLETE** when:

1. `MechanismHypothesis` and `HypothesisAssessment` models implemented
2. `HypothesisAgent` generates hypotheses from evidence
3. Hypotheses stored in shared context
4. Search queries generated from hypotheses
5. Magentic workflow includes HypothesisAgent
6. All unit tests pass

---

## 8. Value Delivered

| Before (Phase 6) | After (Phase 7) |
|------------------|-----------------|
| Reactive search | Hypothesis-driven search |
| Generic queries | Mechanism-targeted queries |
| No scientific reasoning | Drug β†’ Target β†’ Pathway β†’ Effect |
| Judge says "need more" | Hypothesis says "search for X to test Y" |

**Real example improvement:**
- Query: "metformin alzheimer"
- Before: "metformin alzheimer mechanism", "metformin brain"
- After: "metformin AMPK activation", "AMPK autophagy neurodegeneration", "autophagy amyloid clearance"

The search becomes **scientifically targeted** rather than keyword variations.