Spaces:
Running
Running
File size: 27,533 Bytes
016b413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 |
# Phase 8 Implementation Spec: Report Agent
**Goal**: Generate structured scientific reports with proper citations and methodology.
**Philosophy**: "Research isn't complete until it's communicated clearly."
**Prerequisite**: Phase 7 complete (Hypothesis Agent working)
---
## 1. Why Report Agent?
Current limitation: **Synthesis is basic markdown, not a scientific report.**
Current output:
```markdown
## Drug Repurposing Analysis
### Drug Candidates
- Metformin
### Key Findings
- Some findings
### Citations
1. [Paper 1](url)
```
With Report Agent:
```markdown
## Executive Summary
One-paragraph summary for busy readers...
## Research Question
Clear statement of what was investigated...
## Methodology
- Sources searched: PubMed, DuckDuckGo
- Date range: ...
- Inclusion criteria: ...
## Hypotheses Tested
1. Metformin β AMPK β neuroprotection (Supported: 7 papers, Contradicted: 2)
## Findings
### Mechanistic Evidence
...
### Clinical Evidence
...
## Limitations
- Only English language papers
- Abstract-level analysis only
## Conclusion
...
## References
Properly formatted citations...
```
---
## 2. Architecture
### Phase 8 Addition
```text
Evidence + Hypotheses + Assessment
β
Report Agent
β
Structured Scientific Report
```
### Report Generation Flow
```text
1. JudgeAgent says "synthesize"
2. Magentic Manager selects ReportAgent
3. ReportAgent gathers:
- All evidence from shared context
- All hypotheses (supported/contradicted)
- Assessment scores
4. ReportAgent generates structured report
5. Final output to user
```
---
## 3. Report Model
### 3.1 Data Model (`src/utils/models.py`)
```python
class ReportSection(BaseModel):
"""A section of the research report."""
title: str
content: str
citations: list[str] = Field(default_factory=list)
class ResearchReport(BaseModel):
"""Structured scientific report."""
title: str = Field(description="Report title")
executive_summary: str = Field(
description="One-paragraph summary for quick reading",
min_length=100,
max_length=500
)
research_question: str = Field(description="Clear statement of what was investigated")
methodology: ReportSection = Field(description="How the research was conducted")
hypotheses_tested: list[dict] = Field(
description="Hypotheses with supporting/contradicting evidence counts"
)
mechanistic_findings: ReportSection = Field(
description="Findings about drug mechanisms"
)
clinical_findings: ReportSection = Field(
description="Findings from clinical/preclinical studies"
)
drug_candidates: list[str] = Field(description="Identified drug candidates")
limitations: list[str] = Field(description="Study limitations")
conclusion: str = Field(description="Overall conclusion")
references: list[dict] = Field(
description="Formatted references with title, authors, source, URL"
)
# Metadata
sources_searched: list[str] = Field(default_factory=list)
total_papers_reviewed: int = 0
search_iterations: int = 0
confidence_score: float = Field(ge=0, le=1)
def to_markdown(self) -> str:
"""Render report as markdown."""
sections = [
f"# {self.title}\n",
f"## Executive Summary\n{self.executive_summary}\n",
f"## Research Question\n{self.research_question}\n",
f"## Methodology\n{self.methodology.content}\n",
]
# Hypotheses
sections.append("## Hypotheses Tested\n")
for h in self.hypotheses_tested:
status = "β
Supported" if h.get("supported", 0) > h.get("contradicted", 0) else "β οΈ Mixed"
sections.append(
f"- **{h['mechanism']}** ({status}): "
f"{h.get('supported', 0)} supporting, {h.get('contradicted', 0)} contradicting\n"
)
# Findings
sections.append(f"## Mechanistic Findings\n{self.mechanistic_findings.content}\n")
sections.append(f"## Clinical Findings\n{self.clinical_findings.content}\n")
# Drug candidates
sections.append("## Drug Candidates\n")
for drug in self.drug_candidates:
sections.append(f"- **{drug}**\n")
# Limitations
sections.append("## Limitations\n")
for lim in self.limitations:
sections.append(f"- {lim}\n")
# Conclusion
sections.append(f"## Conclusion\n{self.conclusion}\n")
# References
sections.append("## References\n")
for i, ref in enumerate(self.references, 1):
sections.append(
f"{i}. {ref.get('authors', 'Unknown')}. "
f"*{ref.get('title', 'Untitled')}*. "
f"{ref.get('source', '')} ({ref.get('date', '')}). "
f"[Link]({ref.get('url', '#')})\n"
)
# Metadata footer
sections.append("\n---\n")
sections.append(
f"*Report generated from {self.total_papers_reviewed} papers "
f"across {self.search_iterations} search iterations. "
f"Confidence: {self.confidence_score:.0%}*"
)
return "\n".join(sections)
```
---
## 4. Implementation
### 4.0 Citation Validation (`src/utils/citation_validator.py`)
> **π¨ CRITICAL: Why Citation Validation?**
>
> LLMs frequently **hallucinate** citations - inventing paper titles, authors, and URLs
> that don't exist. For a medical research tool, fake citations are **dangerous**.
>
> This validation layer ensures every reference in the report actually exists
> in the collected evidence.
```python
"""Citation validation to prevent LLM hallucination.
CRITICAL: Medical research requires accurate citations.
This module validates that all references exist in collected evidence.
"""
import logging
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from src.utils.models import Evidence, ResearchReport
logger = logging.getLogger(__name__)
def validate_references(
report: "ResearchReport",
evidence: list["Evidence"]
) -> "ResearchReport":
"""Ensure all references actually exist in collected evidence.
CRITICAL: Prevents LLM hallucination of citations.
Args:
report: The generated research report
evidence: All evidence collected during research
Returns:
Report with only valid references (hallucinated ones removed)
"""
# Build set of valid URLs from evidence
valid_urls = {e.citation.url for e in evidence}
valid_titles = {e.citation.title.lower() for e in evidence}
validated_refs = []
removed_count = 0
for ref in report.references:
ref_url = ref.get("url", "")
ref_title = ref.get("title", "").lower()
# Check if URL matches collected evidence
if ref_url in valid_urls:
validated_refs.append(ref)
# Fallback: check title match (URLs might differ slightly)
elif ref_title and any(ref_title in t or t in ref_title for t in valid_titles):
validated_refs.append(ref)
else:
removed_count += 1
logger.warning(
f"Removed hallucinated reference: '{ref.get('title', 'Unknown')}' "
f"(URL: {ref_url[:50]}...)"
)
if removed_count > 0:
logger.info(
f"Citation validation removed {removed_count} hallucinated references. "
f"{len(validated_refs)} valid references remain."
)
# Update report with validated references
report.references = validated_refs
return report
def build_reference_from_evidence(evidence: "Evidence") -> dict:
"""Build a properly formatted reference from evidence.
Use this to ensure references match the original evidence exactly.
"""
return {
"title": evidence.citation.title,
"authors": evidence.citation.authors or ["Unknown"],
"source": evidence.citation.source,
"date": evidence.citation.date or "n.d.",
"url": evidence.citation.url,
}
```
### 4.1 Report Prompts (`src/prompts/report.py`)
```python
"""Prompts for Report Agent."""
from src.utils.text_utils import truncate_at_sentence, select_diverse_evidence
SYSTEM_PROMPT = """You are a scientific writer specializing in drug repurposing research reports.
Your role is to synthesize evidence and hypotheses into a clear, structured report.
A good report:
1. Has a clear EXECUTIVE SUMMARY (one paragraph, key takeaways)
2. States the RESEARCH QUESTION clearly
3. Describes METHODOLOGY (what was searched, how)
4. Evaluates HYPOTHESES with evidence counts
5. Separates MECHANISTIC and CLINICAL findings
6. Lists specific DRUG CANDIDATES
7. Acknowledges LIMITATIONS honestly
8. Provides a balanced CONCLUSION
9. Includes properly formatted REFERENCES
Write in scientific but accessible language. Be specific about evidence strength.
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
π¨ CRITICAL CITATION REQUIREMENTS π¨
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
You MUST follow these rules for the References section:
1. You may ONLY cite papers that appear in the Evidence section above
2. Every reference URL must EXACTLY match a provided evidence URL
3. Do NOT invent, fabricate, or hallucinate any references
4. Do NOT modify paper titles, authors, dates, or URLs
5. If unsure about a citation, OMIT it rather than guess
6. Copy URLs exactly as provided - do not create similar-looking URLs
VIOLATION OF THESE RULES PRODUCES DANGEROUS MISINFORMATION.
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ"""
async def format_report_prompt(
query: str,
evidence: list,
hypotheses: list,
assessment: dict,
metadata: dict,
embeddings=None
) -> str:
"""Format prompt for report generation.
Includes full evidence details for accurate citation.
"""
# Select diverse evidence (not arbitrary truncation)
selected = await select_diverse_evidence(
evidence, n=20, query=query, embeddings=embeddings
)
# Include FULL citation details for each evidence item
# This helps the LLM create accurate references
evidence_summary = "\n".join([
f"- **Title**: {e.citation.title}\n"
f" **URL**: {e.citation.url}\n"
f" **Authors**: {', '.join(e.citation.authors or ['Unknown'])}\n"
f" **Date**: {e.citation.date or 'n.d.'}\n"
f" **Source**: {e.citation.source}\n"
f" **Content**: {truncate_at_sentence(e.content, 200)}\n"
for e in selected
])
hypotheses_summary = "\n".join([
f"- {h.drug} β {h.target} β {h.pathway} β {h.effect} (Confidence: {h.confidence:.0%})"
for h in hypotheses
]) if hypotheses else "No hypotheses generated yet."
return f"""Generate a structured research report for the following query.
## Original Query
{query}
## Evidence Collected ({len(selected)} papers, selected for diversity)
{evidence_summary}
## Hypotheses Generated
{hypotheses_summary}
## Assessment Scores
- Mechanism Score: {assessment.get('mechanism_score', 'N/A')}/10
- Clinical Evidence Score: {assessment.get('clinical_score', 'N/A')}/10
- Overall Confidence: {assessment.get('confidence', 0):.0%}
## Metadata
- Sources Searched: {', '.join(metadata.get('sources', []))}
- Search Iterations: {metadata.get('iterations', 0)}
Generate a complete ResearchReport with all sections filled in.
REMINDER: Only cite papers from the Evidence section above. Copy URLs exactly."""
```
### 4.2 Report Agent (`src/agents/report_agent.py`)
```python
"""Report agent for generating structured research reports."""
from collections.abc import AsyncIterable
from typing import TYPE_CHECKING, Any
from agent_framework import (
AgentRunResponse,
AgentRunResponseUpdate,
AgentThread,
BaseAgent,
ChatMessage,
Role,
)
from pydantic_ai import Agent
from src.prompts.report import SYSTEM_PROMPT, format_report_prompt
from src.utils.citation_validator import validate_references # CRITICAL
from src.utils.config import settings
from src.utils.models import Evidence, MechanismHypothesis, ResearchReport
if TYPE_CHECKING:
from src.services.embeddings import EmbeddingService
class ReportAgent(BaseAgent):
"""Generates structured scientific reports from evidence and hypotheses."""
def __init__(
self,
evidence_store: dict[str, list[Evidence]],
embedding_service: "EmbeddingService | None" = None, # For diverse selection
) -> None:
super().__init__(
name="ReportAgent",
description="Generates structured scientific research reports with citations",
)
self._evidence_store = evidence_store
self._embeddings = embedding_service
self._agent = Agent(
model=settings.llm_provider,
output_type=ResearchReport,
system_prompt=SYSTEM_PROMPT,
)
async def run(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AgentRunResponse:
"""Generate research report."""
query = self._extract_query(messages)
# Gather all context
evidence = self._evidence_store.get("current", [])
hypotheses = self._evidence_store.get("hypotheses", [])
assessment = self._evidence_store.get("last_assessment", {})
if not evidence:
return AgentRunResponse(
messages=[ChatMessage(
role=Role.ASSISTANT,
text="Cannot generate report: No evidence collected."
)],
response_id="report-no-evidence",
)
# Build metadata
metadata = {
"sources": list(set(e.citation.source for e in evidence)),
"iterations": self._evidence_store.get("iteration_count", 0),
}
# Generate report (format_report_prompt is now async)
prompt = await format_report_prompt(
query=query,
evidence=evidence,
hypotheses=hypotheses,
assessment=assessment,
metadata=metadata,
embeddings=self._embeddings,
)
result = await self._agent.run(prompt)
report = result.output
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# π¨ CRITICAL: Validate citations to prevent hallucination
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
report = validate_references(report, evidence)
# Store validated report
self._evidence_store["final_report"] = report
# Return markdown version
return AgentRunResponse(
messages=[ChatMessage(role=Role.ASSISTANT, text=report.to_markdown())],
response_id="report-complete",
additional_properties={"report": report.model_dump()},
)
def _extract_query(self, messages) -> str:
"""Extract query from messages."""
if isinstance(messages, str):
return messages
elif isinstance(messages, ChatMessage):
return messages.text or ""
elif isinstance(messages, list):
for msg in reversed(messages):
if isinstance(msg, ChatMessage) and msg.role == Role.USER:
return msg.text or ""
elif isinstance(msg, str):
return msg
return ""
async def run_stream(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AsyncIterable[AgentRunResponseUpdate]:
"""Streaming wrapper."""
result = await self.run(messages, thread=thread, **kwargs)
yield AgentRunResponseUpdate(
messages=result.messages,
response_id=result.response_id
)
```
### 4.3 Update MagenticOrchestrator
Add ReportAgent as the final synthesis step:
```python
# In MagenticOrchestrator.__init__
self._report_agent = ReportAgent(self._evidence_store)
# In workflow building
workflow = (
MagenticBuilder()
.participants(
searcher=search_agent,
hypothesizer=hypothesis_agent,
judge=judge_agent,
reporter=self._report_agent, # NEW
)
.with_standard_manager(...)
.build()
)
# Update task instruction
task = f"""Research drug repurposing opportunities for: {query}
Workflow:
1. SearchAgent: Find evidence from PubMed and web
2. HypothesisAgent: Generate mechanistic hypotheses
3. SearchAgent: Targeted search based on hypotheses
4. JudgeAgent: Evaluate evidence sufficiency
5. If sufficient β ReportAgent: Generate structured research report
6. If not sufficient β Repeat from step 1 with refined queries
The final output should be a complete research report with:
- Executive summary
- Methodology
- Hypotheses tested
- Mechanistic and clinical findings
- Drug candidates
- Limitations
- Conclusion with references
"""
```
---
## 5. Directory Structure After Phase 8
```
src/
βββ agents/
β βββ search_agent.py
β βββ judge_agent.py
β βββ hypothesis_agent.py
β βββ report_agent.py # NEW
βββ prompts/
β βββ judge.py
β βββ hypothesis.py
β βββ report.py # NEW
βββ services/
β βββ embeddings.py
βββ utils/
βββ models.py # Updated with report models
```
---
## 6. Tests
### 6.1 Unit Tests (`tests/unit/agents/test_report_agent.py`)
```python
"""Unit tests for ReportAgent."""
import pytest
from unittest.mock import AsyncMock, MagicMock, patch
from src.agents.report_agent import ReportAgent
from src.utils.models import (
Citation, Evidence, MechanismHypothesis,
ResearchReport, ReportSection
)
@pytest.fixture
def sample_evidence():
return [
Evidence(
content="Metformin activates AMPK...",
citation=Citation(
source="pubmed",
title="Metformin mechanisms",
url="https://pubmed.ncbi.nlm.nih.gov/12345/",
date="2023",
authors=["Smith J", "Jones A"]
)
)
]
@pytest.fixture
def sample_hypotheses():
return [
MechanismHypothesis(
drug="Metformin",
target="AMPK",
pathway="mTOR inhibition",
effect="Neuroprotection",
confidence=0.8,
search_suggestions=[]
)
]
@pytest.fixture
def mock_report():
return ResearchReport(
title="Drug Repurposing Analysis: Metformin for Alzheimer's",
executive_summary="This report analyzes metformin as a potential...",
research_question="Can metformin be repurposed for Alzheimer's disease?",
methodology=ReportSection(
title="Methodology",
content="Searched PubMed and web sources..."
),
hypotheses_tested=[
{"mechanism": "Metformin β AMPK β neuroprotection", "supported": 5, "contradicted": 1}
],
mechanistic_findings=ReportSection(
title="Mechanistic Findings",
content="Evidence suggests AMPK activation..."
),
clinical_findings=ReportSection(
title="Clinical Findings",
content="Limited clinical data available..."
),
drug_candidates=["Metformin"],
limitations=["Abstract-level analysis only"],
conclusion="Metformin shows promise...",
references=[],
sources_searched=["pubmed", "web"],
total_papers_reviewed=10,
search_iterations=3,
confidence_score=0.75
)
@pytest.mark.asyncio
async def test_report_agent_generates_report(
sample_evidence, sample_hypotheses, mock_report
):
"""ReportAgent should generate structured report."""
store = {
"current": sample_evidence,
"hypotheses": sample_hypotheses,
"last_assessment": {"mechanism_score": 8, "clinical_score": 6}
}
with patch("src.agents.report_agent.Agent") as MockAgent:
mock_result = MagicMock()
mock_result.output = mock_report
MockAgent.return_value.run = AsyncMock(return_value=mock_result)
agent = ReportAgent(store)
response = await agent.run("metformin alzheimer")
assert "Executive Summary" in response.messages[0].text
assert "Methodology" in response.messages[0].text
assert "References" in response.messages[0].text
@pytest.mark.asyncio
async def test_report_agent_no_evidence():
"""ReportAgent should handle empty evidence gracefully."""
store = {"current": [], "hypotheses": []}
agent = ReportAgent(store)
response = await agent.run("test query")
assert "Cannot generate report" in response.messages[0].text
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# π¨ CRITICAL: Citation Validation Tests
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
@pytest.mark.asyncio
async def test_report_agent_removes_hallucinated_citations(sample_evidence):
"""ReportAgent should remove citations not in evidence."""
from src.utils.citation_validator import validate_references
# Create report with mix of valid and hallucinated references
report_with_hallucinations = ResearchReport(
title="Test Report",
executive_summary="This is a test report for citation validation...",
research_question="Testing citation validation",
methodology=ReportSection(title="Methodology", content="Test"),
hypotheses_tested=[],
mechanistic_findings=ReportSection(title="Mechanistic", content="Test"),
clinical_findings=ReportSection(title="Clinical", content="Test"),
drug_candidates=["TestDrug"],
limitations=["Test limitation"],
conclusion="Test conclusion",
references=[
# Valid reference (matches sample_evidence)
{
"title": "Metformin mechanisms",
"url": "https://pubmed.ncbi.nlm.nih.gov/12345/",
"authors": ["Smith J", "Jones A"],
"date": "2023",
"source": "pubmed"
},
# HALLUCINATED reference (URL doesn't exist in evidence)
{
"title": "Fake Paper That Doesn't Exist",
"url": "https://fake-journal.com/made-up-paper",
"authors": ["Hallucinated A"],
"date": "2024",
"source": "fake"
},
# Another HALLUCINATED reference
{
"title": "Invented Research",
"url": "https://pubmed.ncbi.nlm.nih.gov/99999999/",
"authors": ["NotReal B"],
"date": "2025",
"source": "pubmed"
}
],
sources_searched=["pubmed"],
total_papers_reviewed=1,
search_iterations=1,
confidence_score=0.5
)
# Validate - should remove hallucinated references
validated_report = validate_references(report_with_hallucinations, sample_evidence)
# Only the valid reference should remain
assert len(validated_report.references) == 1
assert validated_report.references[0]["title"] == "Metformin mechanisms"
assert "Fake Paper" not in str(validated_report.references)
def test_citation_validator_handles_empty_references():
"""Citation validator should handle reports with no references."""
from src.utils.citation_validator import validate_references
report = ResearchReport(
title="Empty Refs Report",
executive_summary="This report has no references...",
research_question="Testing empty refs",
methodology=ReportSection(title="Methodology", content="Test"),
hypotheses_tested=[],
mechanistic_findings=ReportSection(title="Mechanistic", content="Test"),
clinical_findings=ReportSection(title="Clinical", content="Test"),
drug_candidates=[],
limitations=[],
conclusion="Test",
references=[], # Empty!
sources_searched=[],
total_papers_reviewed=0,
search_iterations=0,
confidence_score=0.0
)
validated = validate_references(report, [])
assert validated.references == []
```
---
## 7. Definition of Done
Phase 8 is **COMPLETE** when:
1. `ResearchReport` model implemented with all sections
2. `ReportAgent` generates structured reports
3. Reports include proper citations and methodology
4. Magentic workflow uses ReportAgent for final synthesis
5. Report renders as clean markdown
6. All unit tests pass
---
## 8. Value Delivered
| Before (Phase 7) | After (Phase 8) |
|------------------|-----------------|
| Basic synthesis | Structured scientific report |
| Simple bullet points | Executive summary + methodology |
| List of citations | Formatted references |
| No methodology | Clear research process |
| No limitations | Honest limitations section |
**Sample output comparison:**
Before:
```
## Analysis
- Metformin might help
- Found 5 papers
[Link 1] [Link 2]
```
After:
```
# Drug Repurposing Analysis: Metformin for Alzheimer's Disease
## Executive Summary
Analysis of 15 papers suggests metformin may provide neuroprotection
through AMPK activation. Mechanistic evidence is strong (8/10),
while clinical evidence is moderate (6/10)...
## Methodology
Systematic search of PubMed and web sources using queries...
## Hypotheses Tested
- β
Metformin β AMPK β neuroprotection (7 supporting, 2 contradicting)
## References
1. Smith J, Jones A. *Metformin mechanisms*. Nature (2023). [Link](...)
```
---
## 9. Complete Magentic Architecture (Phases 5-8)
```
User Query
β
Gradio UI
β
Magentic Manager (LLM Coordinator)
βββ SearchAgent ββ PubMed + Web + VectorDB
βββ HypothesisAgent ββ Mechanistic Reasoning
βββ JudgeAgent ββ Evidence Assessment
βββ ReportAgent ββ Final Synthesis
β
Structured Research Report
```
**This matches Mario's diagram** with the practical agents that add real value for drug repurposing research.
|