Spaces:
Running
Running
File size: 20,665 Bytes
d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb 9760706 d7e5abb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
# Phase 5 Implementation Spec: Magentic Integration (Optional)
**Goal**: Upgrade orchestrator to use Microsoft Agent Framework's Magentic-One pattern.
**Philosophy**: "Same API, Better Engine."
**Prerequisite**: Phase 4 complete (MVP working end-to-end)
---
## 1. Why Magentic?
Magentic-One provides:
- **LLM-powered manager** that dynamically plans, selects agents, tracks progress
- **Built-in stall detection** and automatic replanning
- **Checkpointing** for pause/resume workflows
- **Event streaming** for real-time UI updates
- **Multi-agent coordination** with round limits and reset logic
This is **NOT required for MVP**. Only implement if time permits after Phase 4.
---
## 2. Architecture Alignment
### Current Phase 4 Architecture
```
User Query
β
Orchestrator (while loop)
βββ SearchHandler.execute() β Evidence
βββ JudgeHandler.assess() β JudgeAssessment
βββ Loop/Synthesize decision
β
Research Report
```
### Phase 5 Magentic Architecture
```
User Query
β
MagenticBuilder
βββ SearchAgent (wraps SearchHandler)
βββ JudgeAgent (wraps JudgeHandler)
βββ StandardMagenticManager (LLM coordinator)
β
Research Report (same output format)
```
**Key Insight**: We wrap existing handlers as `AgentProtocol` implementations. The domain logic stays the same.
---
## 3. Design for Seamless Integration
### 3.1 Protocol-Based Design (Phase 4 prep)
In Phase 4, define handlers using Protocols so they can be wrapped later:
```python
# src/orchestrator.py (Phase 4)
from typing import Protocol, List
from src.utils.models import Evidence, SearchResult, JudgeAssessment
class SearchHandlerProtocol(Protocol):
"""Protocol for search handler - can be wrapped as Agent later."""
async def execute(self, query: str, max_results_per_tool: int = 10) -> SearchResult:
...
class JudgeHandlerProtocol(Protocol):
"""Protocol for judge handler - can be wrapped as Agent later."""
async def assess(self, question: str, evidence: List[Evidence]) -> JudgeAssessment:
...
class OrchestratorProtocol(Protocol):
"""Protocol for orchestrator - allows swapping implementations."""
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
...
```
### 3.2 Facade Pattern
The `Orchestrator` class is a facade. In Phase 5, we create `MagenticOrchestrator` with the same interface:
```python
# Phase 4: Simple orchestrator
orchestrator = Orchestrator(search_handler, judge_handler)
# Phase 5: Magentic orchestrator (SAME API)
orchestrator = MagenticOrchestrator(search_handler, judge_handler)
# Usage is identical
async for event in orchestrator.run("metformin alzheimer"):
print(event.to_markdown())
```
---
## 4. Phase 5 Implementation
### 4.1 Install Agent Framework
Add to `pyproject.toml`:
```toml
[project.optional-dependencies]
magentic = [
"agent-framework-core>=0.1.0",
]
```
### 4.2 Agent Wrappers (`src/agents/search_agent.py`)
Wrap `SearchHandler` as an `AgentProtocol`.
**Note**: `AgentProtocol` requires `id`, `name`, `display_name`, `description`, `run`, `run_stream`, and `get_new_thread`.
```python
"""Search agent wrapper for Magentic integration."""
from typing import Any, AsyncIterable
from agent_framework import AgentProtocol, AgentRunResponse, AgentRunResponseUpdate, ChatMessage, Role, AgentThread
from src.tools.search_handler import SearchHandler
from src.utils.models import SearchResult
class SearchAgent:
"""Wraps SearchHandler as an AgentProtocol for Magentic."""
def __init__(self, search_handler: SearchHandler):
self._handler = search_handler
self._id = "search-agent"
self._name = "SearchAgent"
self._description = "Searches PubMed and web for drug repurposing evidence"
@property
def id(self) -> str:
return self._id
@property
def name(self) -> str | None:
return self._name
@property
def display_name(self) -> str:
return self._name
@property
def description(self) -> str | None:
return self._description
async def run(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AgentRunResponse:
"""Execute search based on the last user message."""
# Extract query from messages
query = ""
if isinstance(messages, list):
for msg in reversed(messages):
if isinstance(msg, ChatMessage) and msg.role == Role.USER and msg.text:
query = msg.text
break
elif isinstance(msg, str):
query = msg
break
elif isinstance(messages, str):
query = messages
if not query:
return AgentRunResponse(
messages=[ChatMessage(role=Role.ASSISTANT, text="No query provided")],
response_id="search-no-query",
)
# Execute search
result: SearchResult = await self._handler.execute(query, max_results_per_tool=10)
# Format response
evidence_text = "\n".join([
f"- [{e.citation.title}]({e.citation.url}): {e.content[:200]}..."
for e in result.evidence[:5]
])
response_text = f"Found {result.total_found} sources:\n\n{evidence_text}"
return AgentRunResponse(
messages=[ChatMessage(role=Role.ASSISTANT, text=response_text)],
response_id=f"search-{result.total_found}",
additional_properties={"evidence": [e.model_dump() for e in result.evidence]},
)
async def run_stream(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AsyncIterable[AgentRunResponseUpdate]:
"""Streaming wrapper for search (search itself isn't streaming)."""
result = await self.run(messages, thread=thread, **kwargs)
# Yield single update with full result
yield AgentRunResponseUpdate(
messages=result.messages,
response_id=result.response_id
)
def get_new_thread(self, **kwargs: Any) -> AgentThread:
"""Create a new thread."""
return AgentThread(**kwargs)
```
### 4.3 Judge Agent Wrapper (`src/agents/judge_agent.py`)
```python
"""Judge agent wrapper for Magentic integration."""
from typing import Any, List, AsyncIterable
from agent_framework import AgentProtocol, AgentRunResponse, AgentRunResponseUpdate, ChatMessage, Role, AgentThread
from src.agent_factory.judges import JudgeHandler
from src.utils.models import Evidence, JudgeAssessment
class JudgeAgent:
"""Wraps JudgeHandler as an AgentProtocol for Magentic."""
def __init__(self, judge_handler: JudgeHandler, evidence_store: dict[str, List[Evidence]]):
self._handler = judge_handler
self._evidence_store = evidence_store # Shared state for evidence
self._id = "judge-agent"
self._name = "JudgeAgent"
self._description = "Evaluates evidence quality and determines if sufficient for synthesis"
@property
def id(self) -> str:
return self._id
@property
def name(self) -> str | None:
return self._name
@property
def display_name(self) -> str:
return self._name
@property
def description(self) -> str | None:
return self._description
async def run(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AgentRunResponse:
"""Assess evidence quality."""
# Extract original question from messages
question = ""
if isinstance(messages, list):
for msg in reversed(messages):
if isinstance(msg, ChatMessage) and msg.role == Role.USER and msg.text:
question = msg.text
break
elif isinstance(msg, str):
question = msg
break
elif isinstance(messages, str):
question = messages
# Get evidence from shared store
evidence = self._evidence_store.get("current", [])
# Assess
assessment: JudgeAssessment = await self._handler.assess(question, evidence)
# Format response
response_text = f"""## Assessment
**Sufficient**: {assessment.sufficient}
**Confidence**: {assessment.confidence:.0%}
**Recommendation**: {assessment.recommendation}
### Scores
- Mechanism: {assessment.details.mechanism_score}/10
- Clinical: {assessment.details.clinical_evidence_score}/10
### Reasoning
{assessment.reasoning}
"""
if assessment.next_search_queries:
response_text += f"\n### Next Queries\n" + "\n".join(
f"- {q}" for q in assessment.next_search_queries
)
return AgentRunResponse(
messages=[ChatMessage(role=Role.ASSISTANT, text=response_text)],
response_id=f"judge-{assessment.recommendation}",
additional_properties={"assessment": assessment.model_dump()},
)
async def run_stream(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AsyncIterable[AgentRunResponseUpdate]:
"""Streaming wrapper for judge."""
result = await self.run(messages, thread=thread, **kwargs)
yield AgentRunResponseUpdate(
messages=result.messages,
response_id=result.response_id
)
def get_new_thread(self, **kwargs: Any) -> AgentThread:
"""Create a new thread."""
return AgentThread(**kwargs)
```
### 4.4 Magentic Orchestrator (`src/orchestrator_magentic.py`)
```python
"""Magentic-based orchestrator for DeepCritical."""
from typing import AsyncGenerator, List
import structlog
from agent_framework import (
MagenticBuilder,
MagenticFinalResultEvent,
MagenticAgentMessageEvent,
MagenticOrchestratorMessageEvent,
MagenticAgentDeltaEvent,
WorkflowOutputEvent,
)
from agent_framework.openai import OpenAIChatClient
from src.agents.search_agent import SearchAgent
from src.agents.judge_agent import JudgeAgent
from src.tools.search_handler import SearchHandler
from src.agent_factory.judges import JudgeHandler
from src.utils.models import AgentEvent, Evidence
logger = structlog.get_logger()
class MagenticOrchestrator:
"""
Magentic-based orchestrator - same API as Orchestrator.
Uses Microsoft Agent Framework's MagenticBuilder for multi-agent coordination.
"""
def __init__(
self,
search_handler: SearchHandler,
judge_handler: JudgeHandler,
max_rounds: int = 10,
):
self._search_handler = search_handler
self._judge_handler = judge_handler
self._max_rounds = max_rounds
self._evidence_store: dict[str, List[Evidence]] = {"current": []}
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
"""
Run the Magentic workflow - same API as simple Orchestrator.
Yields AgentEvent objects for real-time UI updates.
"""
logger.info("Starting Magentic orchestrator", query=query)
yield AgentEvent(
type="started",
message=f"Starting research (Magentic mode): {query}",
iteration=0,
)
# Create agent wrappers
search_agent = SearchAgent(self._search_handler)
judge_agent = JudgeAgent(self._judge_handler, self._evidence_store)
# Build Magentic workflow
# Note: MagenticBuilder.participants takes named arguments for agent instances
workflow = (
MagenticBuilder()
.participants(
searcher=search_agent,
judge=judge_agent,
)
.with_standard_manager(
chat_client=OpenAIChatClient(),
max_round_count=self._max_rounds,
max_stall_count=3,
max_reset_count=2,
)
.build()
)
# Task instruction for the manager
task = f"""Research drug repurposing opportunities for: {query}
Instructions:
1. Use SearcherAgent to find evidence from PubMed and web
2. Use JudgeAgent to evaluate if evidence is sufficient
3. If JudgeAgent says "continue", search with refined queries
4. If JudgeAgent says "synthesize", provide final synthesis
5. Stop when synthesis is ready or max rounds reached
Focus on finding:
- Mechanism of action evidence
- Clinical/preclinical studies
- Specific drug candidates
"""
iteration = 0
try:
# workflow.run_stream returns an async generator of workflow events
async for event in workflow.run_stream(task):
if isinstance(event, MagenticOrchestratorMessageEvent):
# Manager events (planning, instruction, ledger)
message_text = event.message.text if event.message else ""
yield AgentEvent(
type="judging",
message=f"Manager ({event.kind}): {message_text[:100]}...",
iteration=iteration,
)
elif isinstance(event, MagenticAgentMessageEvent):
# Complete agent response
iteration += 1
agent_name = event.agent_id or "unknown"
msg_text = event.message.text if event.message else ""
if "search" in agent_name.lower():
# Check if we found evidence (based on SearchAgent logic)
# In a real implementation we might extract metadata
yield AgentEvent(
type="search_complete",
message=f"Search agent: {msg_text[:100]}...",
iteration=iteration,
)
elif "judge" in agent_name.lower():
yield AgentEvent(
type="judge_complete",
message=f"Judge agent: {msg_text[:100]}...",
iteration=iteration,
)
elif isinstance(event, MagenticFinalResultEvent):
# Final workflow result
final_text = event.message.text if event.message else "No result"
yield AgentEvent(
type="complete",
message=final_text,
data={"iterations": iteration},
iteration=iteration,
)
elif isinstance(event, MagenticAgentDeltaEvent):
# Streaming token chunks from agents (optional "typing" effect)
# Only emit if we have actual text content
if event.text:
yield AgentEvent(
type="streaming",
message=event.text,
data={"agent_id": event.agent_id},
iteration=iteration,
)
elif isinstance(event, WorkflowOutputEvent):
# Alternative final output event
if event.data:
yield AgentEvent(
type="complete",
message=str(event.data),
iteration=iteration,
)
except Exception as e:
logger.error("Magentic workflow failed", error=str(e))
yield AgentEvent(
type="error",
message=f"Workflow error: {str(e)}",
iteration=iteration,
)
```
### 4.5 Factory Pattern (`src/orchestrator_factory.py`)
Allow switching between implementations:
```python
"""Factory for creating orchestrators."""
from typing import Literal
from src.orchestrator import Orchestrator
from src.tools.search_handler import SearchHandler
from src.agent_factory.judges import JudgeHandler
from src.utils.models import OrchestratorConfig
def create_orchestrator(
search_handler: SearchHandler,
judge_handler: JudgeHandler,
config: OrchestratorConfig | None = None,
mode: Literal["simple", "magentic"] = "simple",
):
"""
Create an orchestrator instance.
Args:
search_handler: The search handler
judge_handler: The judge handler
config: Optional configuration
mode: "simple" for Phase 4 loop, "magentic" for Phase 5 multi-agent
Returns:
Orchestrator instance (same interface regardless of mode)
"""
if mode == "magentic":
try:
from src.orchestrator_magentic import MagenticOrchestrator
return MagenticOrchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
max_rounds=config.max_iterations if config else 10,
)
except ImportError:
# Fallback to simple if agent-framework not installed
pass
return Orchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
config=config,
)
```
---
## 5. Directory Structure After Phase 5
```
src/
βββ app.py # Gradio UI (unchanged)
βββ orchestrator.py # Phase 4 simple orchestrator
βββ orchestrator_magentic.py # Phase 5 Magentic orchestrator
βββ orchestrator_factory.py # Factory to switch implementations
βββ agents/ # NEW: Agent wrappers
β βββ __init__.py
β βββ search_agent.py # SearchHandler as AgentProtocol
β βββ judge_agent.py # JudgeHandler as AgentProtocol
βββ agent_factory/
β βββ judges.py # JudgeHandler (unchanged)
βββ tools/
β βββ pubmed.py # PubMed tool (unchanged)
β βββ websearch.py # Web tool (unchanged)
β βββ search_handler.py # SearchHandler (unchanged)
βββ utils/
βββ models.py # Models (unchanged)
```
---
## 6. Implementation Checklist
- [ ] Ensure Phase 4 uses Protocol-based handler interfaces
- [ ] Add `agent-framework-core` to optional dependencies
- [ ] Create `src/agents/` directory
- [ ] Implement `SearchAgent` wrapper
- [ ] Implement `JudgeAgent` wrapper
- [ ] Implement `MagenticOrchestrator`
- [ ] Implement `orchestrator_factory.py`
- [ ] Add tests for agent wrappers
- [ ] Test Magentic flow end-to-end
- [ ] Update `src/app.py` to use factory with mode toggle
---
## 7. Definition of Done
Phase 5 is **COMPLETE** when:
1. All Phase 4 tests still pass (no regression)
2. `MagenticOrchestrator` has same API as `Orchestrator`
3. Can switch between modes via factory:
```python
# Simple mode (Phase 4)
orchestrator = create_orchestrator(search, judge, mode="simple")
# Magentic mode (Phase 5)
orchestrator = create_orchestrator(search, judge, mode="magentic")
# Same usage!
async for event in orchestrator.run("metformin alzheimer"):
print(event.to_markdown())
```
4. UI works with both modes
5. Graceful fallback if agent-framework not installed
---
## 8. When to Implement
**Priority**: LOW (optional enhancement)
Implement ONLY after:
1. β
Phase 1: Foundation
2. β
Phase 2: Search
3. β
Phase 3: Judge
4. β
Phase 4: Orchestrator + UI (MVP SHIPPED)
If hackathon deadline is approaching, **SKIP Phase 5**. Ship the MVP.
---
## 9. Benefits of This Design
1. **No breaking changes** - Phase 4 code works unchanged
2. **Same API** - `run()` returns `AsyncGenerator[AgentEvent, None]`
3. **Gradual adoption** - Optional dependency, factory fallback
4. **Testable** - Each component can be tested independently
5. **Aligns with Tonic's vision** - Uses Microsoft Agent Framework patterns
---
## 10. Reference
- Microsoft Agent Framework: `reference_repos/agent-framework/`
- Magentic samples: `reference_repos/agent-framework/python/samples/getting_started/workflows/orchestration/magentic.py`
- AgentProtocol: `reference_repos/agent-framework/python/packages/core/agent_framework/_agents.py`
|