Spaces:
Running
Running
File size: 1,923 Bytes
016b413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
#!/usr/bin/env python3
"""Demo: Modal-powered statistical analysis.
This script uses StatisticalAnalyzer directly (NO agent_framework dependency).
Usage:
uv run python examples/modal_demo/run_analysis.py "metformin alzheimer"
"""
import argparse
import asyncio
import os
import sys
from src.services.statistical_analyzer import get_statistical_analyzer
from src.tools.pubmed import PubMedTool
from src.utils.config import settings
async def main() -> None:
"""Run the Modal analysis demo."""
parser = argparse.ArgumentParser(description="Modal Analysis Demo")
parser.add_argument("query", help="Research query")
args = parser.parse_args()
if not settings.modal_available:
print("Error: Modal credentials not configured.")
sys.exit(1)
if not (os.getenv("OPENAI_API_KEY") or os.getenv("ANTHROPIC_API_KEY")):
print("Error: No LLM API key found.")
sys.exit(1)
print(f"\n{'=' * 60}")
print("DeepCritical Modal Analysis Demo")
print(f"Query: {args.query}")
print(f"{'=' * 60}\n")
# Step 1: Gather Evidence
print("Step 1: Gathering evidence from PubMed...")
pubmed = PubMedTool()
evidence = await pubmed.search(args.query, max_results=5)
print(f" Found {len(evidence)} papers\n")
# Step 2: Run Modal Analysis
print("Step 2: Running statistical analysis in Modal sandbox...")
analyzer = get_statistical_analyzer()
result = await analyzer.analyze(query=args.query, evidence=evidence)
# Step 3: Display Results
print("\n" + "=" * 60)
print("ANALYSIS RESULTS")
print("=" * 60)
print(f"\nVerdict: {result.verdict}")
print(f"Confidence: {result.confidence:.0%}")
print("\nKey Findings:")
for finding in result.key_findings:
print(f" - {finding}")
print("\n[Demo Complete - Code executed in Modal, not locally]")
if __name__ == "__main__":
asyncio.run(main())
|