Spaces:
Running
Running
File size: 6,210 Bytes
026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d d45d242 026ee5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Services API Reference
This page documents the API for DeepCritical services.
## EmbeddingService
**Module**: `src.services.embeddings`
**Purpose**: Local sentence-transformers for semantic search and deduplication.
### Methods
#### `embed`
<!--codeinclude-->
[EmbeddingService.embed](../src/services/embeddings.py) start_line:55 end_line:55
<!--/codeinclude-->
Generates embedding for a text string.
**Parameters**:
- `text`: Text to embed
**Returns**: Embedding vector as list of floats.
#### `embed_batch`
```python
async def embed_batch(self, texts: list[str]) -> list[list[float]]
```
Generates embeddings for multiple texts.
**Parameters**:
- `texts`: List of texts to embed
**Returns**: List of embedding vectors.
#### `similarity`
```python
async def similarity(self, text1: str, text2: str) -> float
```
Calculates similarity between two texts.
**Parameters**:
- `text1`: First text
- `text2`: Second text
**Returns**: Similarity score (0.0-1.0).
#### `find_duplicates`
```python
async def find_duplicates(
self,
texts: list[str],
threshold: float = 0.85
) -> list[tuple[int, int]]
```
Finds duplicate texts based on similarity threshold.
**Parameters**:
- `texts`: List of texts to check
- `threshold`: Similarity threshold (default: 0.85)
**Returns**: List of (index1, index2) tuples for duplicate pairs.
#### `add_evidence`
```python
async def add_evidence(
self,
evidence_id: str,
content: str,
metadata: dict[str, Any]
) -> None
```
Adds evidence to vector store for semantic search.
**Parameters**:
- `evidence_id`: Unique identifier for the evidence
- `content`: Evidence text content
- `metadata`: Additional metadata dictionary
#### `search_similar`
```python
async def search_similar(
self,
query: str,
n_results: int = 5
) -> list[dict[str, Any]]
```
Finds semantically similar evidence.
**Parameters**:
- `query`: Search query string
- `n_results`: Number of results to return (default: 5)
**Returns**: List of dictionaries with `id`, `content`, `metadata`, and `distance` keys.
#### `deduplicate`
```python
async def deduplicate(
self,
new_evidence: list[Evidence],
threshold: float = 0.9
) -> list[Evidence]
```
Removes semantically duplicate evidence.
**Parameters**:
- `new_evidence`: List of evidence items to deduplicate
- `threshold`: Similarity threshold (default: 0.9, where 0.9 = 90% similar is duplicate)
**Returns**: List of unique evidence items (not already in vector store).
### Factory Function
#### `get_embedding_service`
```python
@lru_cache(maxsize=1)
def get_embedding_service() -> EmbeddingService
```
Returns singleton EmbeddingService instance.
## LlamaIndexRAGService
**Module**: `src.services.rag`
**Purpose**: Retrieval-Augmented Generation using LlamaIndex.
### Methods
#### `ingest_evidence`
<!--codeinclude-->
[LlamaIndexRAGService.ingest_evidence](../src/services/llamaindex_rag.py) start_line:290 end_line:290
<!--/codeinclude-->
Ingests evidence into RAG service.
**Parameters**:
- `evidence_list`: List of Evidence objects to ingest
**Note**: Supports multiple embedding providers (OpenAI, local sentence-transformers, Hugging Face).
#### `retrieve`
```python
def retrieve(
self,
query: str,
top_k: int | None = None
) -> list[dict[str, Any]]
```
Retrieves relevant documents for a query.
**Parameters**:
- `query`: Search query string
- `top_k`: Number of top results to return (defaults to `similarity_top_k` from constructor)
**Returns**: List of dictionaries with `text`, `score`, and `metadata` keys.
#### `query`
```python
def query(
self,
query_str: str,
top_k: int | None = None
) -> str
```
Queries RAG service and returns synthesized response.
**Parameters**:
- `query_str`: Query string
- `top_k`: Number of results to use (defaults to `similarity_top_k` from constructor)
**Returns**: Synthesized response string.
**Raises**:
- `ConfigurationError`: If no LLM API key is available for query synthesis
#### `ingest_documents`
```python
def ingest_documents(self, documents: list[Any]) -> None
```
Ingests raw LlamaIndex Documents.
**Parameters**:
- `documents`: List of LlamaIndex Document objects
#### `clear_collection`
```python
def clear_collection(self) -> None
```
Clears all documents from the collection.
### Factory Function
#### `get_rag_service`
```python
def get_rag_service(
collection_name: str = "deepcritical_evidence",
oauth_token: str | None = None,
**kwargs: Any
) -> LlamaIndexRAGService
```
Get or create a RAG service instance.
**Parameters**:
- `collection_name`: Name of the ChromaDB collection (default: "deepcritical_evidence")
- `oauth_token`: Optional OAuth token from HuggingFace login (takes priority over env vars)
- `**kwargs`: Additional arguments for LlamaIndexRAGService (e.g., `use_openai_embeddings=False`)
**Returns**: Configured LlamaIndexRAGService instance.
**Note**: By default, uses local embeddings (sentence-transformers) which require no API keys.
## StatisticalAnalyzer
**Module**: `src.services.statistical_analyzer`
**Purpose**: Secure execution of AI-generated statistical code.
### Methods
#### `analyze`
```python
async def analyze(
self,
query: str,
evidence: list[Evidence],
hypothesis: dict[str, Any] | None = None
) -> AnalysisResult
```
Analyzes a research question using statistical methods.
**Parameters**:
- `query`: The research question
- `evidence`: List of Evidence objects to analyze
- `hypothesis`: Optional hypothesis dict with `drug`, `target`, `pathway`, `effect`, `confidence` keys
**Returns**: `AnalysisResult` with:
- `verdict`: SUPPORTED, REFUTED, or INCONCLUSIVE
- `confidence`: Confidence in verdict (0.0-1.0)
- `statistical_evidence`: Summary of statistical findings
- `code_generated`: Python code that was executed
- `execution_output`: Output from code execution
- `key_takeaways`: Key takeaways from analysis
- `limitations`: List of limitations
**Note**: Requires Modal credentials for sandbox execution.
## See Also
- [Architecture - Services](../architecture/services.md) - Architecture overview
- [Configuration](../configuration/index.md) - Service configuration
|