File size: 9,171 Bytes
026ee5d
 
 
 
 
 
d45d242
 
 
026ee5d
 
 
 
d45d242
 
 
026ee5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d45d242
026ee5d
d45d242
026ee5d
d45d242
026ee5d
d45d242
026ee5d
d45d242
026ee5d
d45d242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
026ee5d
d45d242
026ee5d
d45d242
 
 
 
 
 
 
 
 
 
026ee5d
d45d242
026ee5d
d45d242
026ee5d
d45d242
026ee5d
d45d242
 
026ee5d
d45d242
 
 
 
 
026ee5d
d45d242
026ee5d
d45d242
026ee5d
d45d242
026ee5d
d45d242
4f87591
d45d242
 
 
f74bf7e
d45d242
 
 
 
f74bf7e
d45d242
e568430
d45d242
f73c49f
d45d242
2547ba7
d45d242
e427816
d45d242
 
 
 
e6507c6
d45d242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Agents Architecture

DeepCritical uses Pydantic AI agents for all AI-powered operations. All agents follow a consistent pattern and use structured output types.

## Agent Pattern

### Pydantic AI Agents

Pydantic AI agents use the `Agent` class with the following structure:

- **System Prompt**: Module-level constant with date injection
- **Agent Class**: `__init__(model: Any | None = None)`
- **Main Method**: Async method (e.g., `async def evaluate()`, `async def write_report()`)
- **Factory Function**: `def create_agent_name(model: Any | None = None, oauth_token: str | None = None) -> AgentName`

**Note**: Factory functions accept an optional `oauth_token` parameter for HuggingFace authentication, which takes priority over environment variables.

## Model Initialization

Agents use `get_model()` from `src/agent_factory/judges.py` if no model is provided. This supports:

- OpenAI models
- Anthropic models
- HuggingFace Inference API models

The model selection is based on the configured `LLM_PROVIDER` in settings.

## Error Handling

Agents return fallback values on failure rather than raising exceptions:

- `KnowledgeGapOutput(research_complete=False, outstanding_gaps=[...])`
- Empty strings for text outputs
- Default structured outputs

All errors are logged with context using structlog.

## Input Validation

All agents validate inputs:

- Check that queries/inputs are not empty
- Truncate very long inputs with warnings
- Handle None values gracefully

## Output Types

Agents use structured output types from `src/utils/models.py`:

- `KnowledgeGapOutput`: Research completeness evaluation
- `AgentSelectionPlan`: Tool selection plan
- `ReportDraft`: Long-form report structure
- `ParsedQuery`: Query parsing and mode detection

For text output (writer agents), agents return `str` directly.

## Agent Types

### Knowledge Gap Agent

**File**: `src/agents/knowledge_gap.py`

**Purpose**: Evaluates research state and identifies knowledge gaps.

**Output**: `KnowledgeGapOutput` with:
- `research_complete`: Boolean indicating if research is complete
- `outstanding_gaps`: List of remaining knowledge gaps

**Methods**:
- `async def evaluate(query, background_context, conversation_history, iteration, time_elapsed_minutes, max_time_minutes) -> KnowledgeGapOutput`

### Tool Selector Agent

**File**: `src/agents/tool_selector.py`

**Purpose**: Selects appropriate tools for addressing knowledge gaps.

**Output**: `AgentSelectionPlan` with list of `AgentTask` objects.

**Available Agents**:
- `WebSearchAgent`: General web search for fresh information
- `SiteCrawlerAgent`: Research specific entities/companies
- `RAGAgent`: Semantic search within collected evidence

### Writer Agent

**File**: `src/agents/writer.py`

**Purpose**: Generates final reports from research findings.

**Output**: Markdown string with numbered citations.

**Methods**:
- `async def write_report(query, findings, output_length, output_instructions) -> str`

**Features**:
- Validates inputs
- Truncates very long findings (max 50000 chars) with warning
- Retry logic for transient failures (3 retries)
- Citation validation before returning

### Long Writer Agent

**File**: `src/agents/long_writer.py`

**Purpose**: Long-form report generation with section-by-section writing.

**Input/Output**: Uses `ReportDraft` models.

**Methods**:
- `async def write_next_section(query, draft, section_title, section_content) -> LongWriterOutput`
- `async def write_report(query, report_title, report_draft) -> str`

**Features**:
- Writes sections iteratively
- Aggregates references across sections
- Reformats section headings and references
- Deduplicates and renumbers references

### Proofreader Agent

**File**: `src/agents/proofreader.py`

**Purpose**: Proofreads and polishes report drafts.

**Input**: `ReportDraft`
**Output**: Polished markdown string

**Methods**:
- `async def proofread(query, report_title, report_draft) -> str`

**Features**:
- Removes duplicate content across sections
- Adds executive summary if multiple sections
- Preserves all references and citations
- Improves flow and readability

### Thinking Agent

**File**: `src/agents/thinking.py`

**Purpose**: Generates observations from conversation history.

**Output**: Observation string

**Methods**:
- `async def generate_observations(query, background_context, conversation_history) -> str`

### Input Parser Agent

**File**: `src/agents/input_parser.py`

**Purpose**: Parses and improves user queries, detects research mode.

**Output**: `ParsedQuery` with:
- `original_query`: Original query string
- `improved_query`: Refined query string
- `research_mode`: "iterative" or "deep"
- `key_entities`: List of key entities
- `research_questions`: List of research questions

## Magentic Agents

The following agents use the `BaseAgent` pattern from `agent-framework` and are used exclusively with `MagenticOrchestrator`:

### Hypothesis Agent

**File**: `src/agents/hypothesis_agent.py`

**Purpose**: Generates mechanistic hypotheses based on evidence.

**Pattern**: `BaseAgent` from `agent-framework`

**Methods**:
- `async def run(messages, thread, **kwargs) -> AgentRunResponse`

**Features**:
- Uses internal Pydantic AI `Agent` with `HypothesisAssessment` output type
- Accesses shared `evidence_store` for evidence
- Uses embedding service for diverse evidence selection (MMR algorithm)
- Stores hypotheses in shared context

### Search Agent

**File**: `src/agents/search_agent.py`

**Purpose**: Wraps `SearchHandler` as an agent for Magentic orchestrator.

**Pattern**: `BaseAgent` from `agent-framework`

**Methods**:
- `async def run(messages, thread, **kwargs) -> AgentRunResponse`

**Features**:
- Executes searches via `SearchHandlerProtocol`
- Deduplicates evidence using embedding service
- Searches for semantically related evidence
- Updates shared evidence store

### Analysis Agent

**File**: `src/agents/analysis_agent.py`

**Purpose**: Performs statistical analysis using Modal sandbox.

**Pattern**: `BaseAgent` from `agent-framework`

**Methods**:
- `async def run(messages, thread, **kwargs) -> AgentRunResponse`

**Features**:
- Wraps `StatisticalAnalyzer` service
- Analyzes evidence and hypotheses
- Returns verdict (SUPPORTED/REFUTED/INCONCLUSIVE)
- Stores analysis results in shared context

### Report Agent (Magentic)

**File**: `src/agents/report_agent.py`

**Purpose**: Generates structured scientific reports from evidence and hypotheses.

**Pattern**: `BaseAgent` from `agent-framework`

**Methods**:
- `async def run(messages, thread, **kwargs) -> AgentRunResponse`

**Features**:
- Uses internal Pydantic AI `Agent` with `ResearchReport` output type
- Accesses shared evidence store and hypotheses
- Validates citations before returning
- Formats report as markdown

### Judge Agent

**File**: `src/agents/judge_agent.py`

**Purpose**: Evaluates evidence quality and determines if sufficient for synthesis.

**Pattern**: `BaseAgent` from `agent-framework`

**Methods**:
- `async def run(messages, thread, **kwargs) -> AgentRunResponse`
- `async def run_stream(messages, thread, **kwargs) -> AsyncIterable[AgentRunResponseUpdate]`

**Features**:
- Wraps `JudgeHandlerProtocol`
- Accesses shared evidence store
- Returns `JudgeAssessment` with sufficient flag, confidence, and recommendation

## Agent Patterns

DeepCritical uses two distinct agent patterns:

### 1. Pydantic AI Agents (Traditional Pattern)

These agents use the Pydantic AI `Agent` class directly and are used in iterative and deep research flows:

- **Pattern**: `Agent(model, output_type, system_prompt)`
- **Initialization**: `__init__(model: Any | None = None)`
- **Methods**: Agent-specific async methods (e.g., `async def evaluate()`, `async def write_report()`)
- **Examples**: `KnowledgeGapAgent`, `ToolSelectorAgent`, `WriterAgent`, `LongWriterAgent`, `ProofreaderAgent`, `ThinkingAgent`, `InputParserAgent`

### 2. Magentic Agents (Agent-Framework Pattern)

These agents use the `BaseAgent` class from `agent-framework` and are used in Magentic orchestrator:

- **Pattern**: `BaseAgent` from `agent-framework` with `async def run()` method
- **Initialization**: `__init__(evidence_store, embedding_service, ...)`
- **Methods**: `async def run(messages, thread, **kwargs) -> AgentRunResponse`
- **Examples**: `HypothesisAgent`, `SearchAgent`, `AnalysisAgent`, `ReportAgent`, `JudgeAgent`

**Note**: Magentic agents are used exclusively with the `MagenticOrchestrator` and follow the agent-framework protocol for multi-agent coordination.

## Factory Functions

All agents have factory functions in `src/agent_factory/agents.py`:

<!--codeinclude-->
[Factory Functions](../src/agent_factory/agents.py) start_line:79 end_line:100
<!--/codeinclude-->

Factory functions:
- Use `get_model()` if no model provided
- Accept `oauth_token` parameter for HuggingFace authentication
- Raise `ConfigurationError` if creation fails
- Log agent creation

## See Also

- [Orchestrators](orchestrators.md) - How agents are orchestrated
- [API Reference - Agents](../api/agents.md) - API documentation
- [Contributing - Code Style](../contributing/code-style.md) - Development guidelines