Services Architecture¶
DeepCritical provides several services for embeddings, RAG, and statistical analysis.
Embedding Service¶
File: src/services/embeddings.py
Purpose: Local sentence-transformers for semantic search and deduplication
Features: - No API Key Required: Uses local sentence-transformers models - Async-Safe: All operations use run_in_executor() to avoid blocking - ChromaDB Storage: Vector storage for embeddings - Deduplication: 0.85 similarity threshold (85% similarity = duplicate)
Model: Configurable via settings.local_embedding_model (default: all-MiniLM-L6-v2)
Methods: - async def embed(text: str) -> list[float]: Generate embeddings - async def embed_batch(texts: list[str]) -> list[list[float]]: Batch embedding - async def similarity(text1: str, text2: str) -> float: Calculate similarity - async def find_duplicates(texts: list[str], threshold: float = 0.85) -> list[tuple[int, int]]: Find duplicates
Usage:
from src.services.embeddings import get_embedding_service
service = get_embedding_service()
embedding = await service.embed("text to embed")
LlamaIndex RAG Service¶
File: src/services/rag.py
Purpose: Retrieval-Augmented Generation using LlamaIndex
Features: - OpenAI Embeddings: Requires OPENAI_API_KEY - ChromaDB Storage: Vector database for document storage - Metadata Preservation: Preserves source, title, URL, date, authors - Lazy Initialization: Graceful fallback if OpenAI key not available
Methods: - async def ingest_evidence(evidence: list[Evidence]) -> None: Ingest evidence into RAG - async def retrieve(query: str, top_k: int = 5) -> list[Document]: Retrieve relevant documents - async def query(query: str, top_k: int = 5) -> str: Query with RAG
Usage:
from src.services.rag import get_rag_service
service = get_rag_service()
if service:
documents = await service.retrieve("query", top_k=5)
Statistical Analyzer¶
File: src/services/statistical_analyzer.py
Purpose: Secure execution of AI-generated statistical code
Features: - Modal Sandbox: Secure, isolated execution environment - Code Generation: Generates Python code via LLM - Library Pinning: Version-pinned libraries in SANDBOX_LIBRARIES - Network Isolation: block_network=True by default
Libraries Available: - pandas, numpy, scipy - matplotlib, scikit-learn - statsmodels
Output: AnalysisResult with: - verdict: SUPPORTED, REFUTED, or INCONCLUSIVE - code: Generated analysis code - output: Execution output - error: Error message if execution failed
Usage:
from src.services.statistical_analyzer import StatisticalAnalyzer
analyzer = StatisticalAnalyzer()
result = await analyzer.analyze(
hypothesis="Metformin reduces cancer risk",
evidence=evidence_list
)
Singleton Pattern¶
All services use the singleton pattern with @lru_cache(maxsize=1):
This ensures: - Single instance per process - Lazy initialization - No dependencies required at import time
Service Availability¶
Services check availability before use:
from src.utils.config import settings
if settings.modal_available:
# Use Modal sandbox
pass
if settings.has_openai_key:
# Use OpenAI embeddings for RAG
pass
See Also¶
- Tools - How services are used by search tools
- API Reference - Services - API documentation
- Configuration - Service configuration