# Phase 4 Implementation Spec: Orchestrator & UI **Goal**: Connect the Brain and the Body, then give it a Face. **Philosophy**: "Streaming is Trust." **Prerequisite**: Phase 3 complete (all judge tests passing) --- ## 1. The Slice Definition This slice connects: 1. **Orchestrator**: The state machine (While loop) calling Search -> Judge. 2. **UI**: Gradio interface that visualizes the loop. **Files to Create/Modify**: - `src/orchestrator.py` - Agent loop logic - `src/app.py` - Gradio UI - `tests/unit/test_orchestrator.py` - Unit tests - `Dockerfile` - Container for deployment - `README.md` - Usage instructions (update) --- ## 2. Agent Events (`src/utils/models.py`) Add event types for streaming UI updates: ```python """Add to src/utils/models.py (after JudgeAssessment models).""" from pydantic import BaseModel, Field from typing import Literal, Any from datetime import datetime class AgentEvent(BaseModel): """Event emitted by the orchestrator for UI streaming.""" type: Literal[ "started", "searching", "search_complete", "judging", "judge_complete", "looping", "synthesizing", "complete", "error", ] message: str data: Any = None timestamp: datetime = Field(default_factory=datetime.now) iteration: int = 0 def to_markdown(self) -> str: """Format event as markdown for chat display.""" icons = { "started": "🚀", "searching": "🔍", "search_complete": "📚", "judging": "🧠", "judge_complete": "✅", "looping": "🔄", "synthesizing": "📝", "complete": "🎉", "error": "❌", } icon = icons.get(self.type, "•") return f"{icon} **{self.type.upper()}**: {self.message}" class OrchestratorConfig(BaseModel): """Configuration for the orchestrator.""" max_iterations: int = Field(default=5, ge=1, le=10) max_results_per_tool: int = Field(default=10, ge=1, le=50) search_timeout: float = Field(default=30.0, ge=5.0, le=120.0) ``` --- ## 3. The Orchestrator (`src/orchestrator.py`) This is the "Agent" logic — the while loop that drives search and judgment. ```python """Orchestrator - the agent loop connecting Search and Judge.""" import asyncio from typing import AsyncGenerator, List, Protocol import structlog from src.utils.models import ( Evidence, SearchResult, JudgeAssessment, AgentEvent, OrchestratorConfig, ) logger = structlog.get_logger() class SearchHandlerProtocol(Protocol): """Protocol for search handler.""" async def execute(self, query: str, max_results_per_tool: int = 10) -> SearchResult: ... class JudgeHandlerProtocol(Protocol): """Protocol for judge handler.""" async def assess(self, question: str, evidence: List[Evidence]) -> JudgeAssessment: ... class Orchestrator: """ The agent orchestrator - runs the Search -> Judge -> Loop cycle. This is a generator-based design that yields events for real-time UI updates. """ def __init__( self, search_handler: SearchHandlerProtocol, judge_handler: JudgeHandlerProtocol, config: OrchestratorConfig | None = None, ): """ Initialize the orchestrator. Args: search_handler: Handler for executing searches judge_handler: Handler for assessing evidence config: Optional configuration (uses defaults if not provided) """ self.search = search_handler self.judge = judge_handler self.config = config or OrchestratorConfig() self.history: List[dict] = [] async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]: """ Run the agent loop for a query. Yields AgentEvent objects for each step, allowing real-time UI updates. Args: query: The user's research question Yields: AgentEvent objects for each step of the process """ logger.info("Starting orchestrator", query=query) yield AgentEvent( type="started", message=f"Starting research for: {query}", iteration=0, ) all_evidence: List[Evidence] = [] current_queries = [query] iteration = 0 while iteration < self.config.max_iterations: iteration += 1 logger.info("Iteration", iteration=iteration, queries=current_queries) # === SEARCH PHASE === yield AgentEvent( type="searching", message=f"Searching for: {', '.join(current_queries[:3])}...", iteration=iteration, ) try: # Execute searches for all current queries search_tasks = [ self.search.execute(q, self.config.max_results_per_tool) for q in current_queries[:3] # Limit to 3 queries per iteration ] search_results = await asyncio.gather(*search_tasks, return_exceptions=True) # Collect evidence from successful searches new_evidence: List[Evidence] = [] errors: List[str] = [] for q, result in zip(current_queries[:3], search_results): if isinstance(result, Exception): errors.append(f"Search for '{q}' failed: {str(result)}") else: new_evidence.extend(result.evidence) errors.extend(result.errors) # Deduplicate evidence by URL seen_urls = {e.citation.url for e in all_evidence} unique_new = [e for e in new_evidence if e.citation.url not in seen_urls] all_evidence.extend(unique_new) yield AgentEvent( type="search_complete", message=f"Found {len(unique_new)} new sources ({len(all_evidence)} total)", data={"new_count": len(unique_new), "total_count": len(all_evidence)}, iteration=iteration, ) if errors: logger.warning("Search errors", errors=errors) except Exception as e: logger.error("Search phase failed", error=str(e)) yield AgentEvent( type="error", message=f"Search failed: {str(e)}", iteration=iteration, ) continue # === JUDGE PHASE === yield AgentEvent( type="judging", message=f"Evaluating {len(all_evidence)} sources...", iteration=iteration, ) try: assessment = await self.judge.assess(query, all_evidence) yield AgentEvent( type="judge_complete", message=f"Assessment: {assessment.recommendation} (confidence: {assessment.confidence:.0%})", data={ "sufficient": assessment.sufficient, "confidence": assessment.confidence, "mechanism_score": assessment.details.mechanism_score, "clinical_score": assessment.details.clinical_evidence_score, }, iteration=iteration, ) # Record this iteration in history self.history.append({ "iteration": iteration, "queries": current_queries, "evidence_count": len(all_evidence), "assessment": assessment.model_dump(), }) # === DECISION PHASE === if assessment.sufficient and assessment.recommendation == "synthesize": yield AgentEvent( type="synthesizing", message="Evidence sufficient! Preparing synthesis...", iteration=iteration, ) # Generate final response final_response = self._generate_synthesis(query, all_evidence, assessment) yield AgentEvent( type="complete", message=final_response, data={ "evidence_count": len(all_evidence), "iterations": iteration, "drug_candidates": assessment.details.drug_candidates, "key_findings": assessment.details.key_findings, }, iteration=iteration, ) return else: # Need more evidence - prepare next queries current_queries = assessment.next_search_queries or [ f"{query} mechanism of action", f"{query} clinical evidence", ] yield AgentEvent( type="looping", message=f"Need more evidence. Next searches: {', '.join(current_queries[:2])}...", data={"next_queries": current_queries}, iteration=iteration, ) except Exception as e: logger.error("Judge phase failed", error=str(e)) yield AgentEvent( type="error", message=f"Assessment failed: {str(e)}", iteration=iteration, ) continue # Max iterations reached yield AgentEvent( type="complete", message=self._generate_partial_synthesis(query, all_evidence), data={ "evidence_count": len(all_evidence), "iterations": iteration, "max_reached": True, }, iteration=iteration, ) def _generate_synthesis( self, query: str, evidence: List[Evidence], assessment: JudgeAssessment, ) -> str: """ Generate the final synthesis response. Args: query: The original question evidence: All collected evidence assessment: The final assessment Returns: Formatted synthesis as markdown """ drug_list = "\n".join([f"- **{d}**" for d in assessment.details.drug_candidates]) or "- No specific candidates identified" findings_list = "\n".join([f"- {f}" for f in assessment.details.key_findings]) or "- See evidence below" citations = "\n".join([ f"{i+1}. [{e.citation.title}]({e.citation.url}) ({e.citation.source.upper()}, {e.citation.date})" for i, e in enumerate(evidence[:10]) # Limit to 10 citations ]) return f"""## Drug Repurposing Analysis ### Question {query} ### Drug Candidates {drug_list} ### Key Findings {findings_list} ### Assessment - **Mechanism Score**: {assessment.details.mechanism_score}/10 - **Clinical Evidence Score**: {assessment.details.clinical_evidence_score}/10 - **Confidence**: {assessment.confidence:.0%} ### Reasoning {assessment.reasoning} ### Citations ({len(evidence)} sources) {citations} --- *Analysis based on {len(evidence)} sources across {len(self.history)} iterations.* """ def _generate_partial_synthesis( self, query: str, evidence: List[Evidence], ) -> str: """ Generate a partial synthesis when max iterations reached. Args: query: The original question evidence: All collected evidence Returns: Formatted partial synthesis as markdown """ citations = "\n".join([ f"{i+1}. [{e.citation.title}]({e.citation.url}) ({e.citation.source.upper()})" for i, e in enumerate(evidence[:10]) ]) return f"""## Partial Analysis (Max Iterations Reached) ### Question {query} ### Status Maximum search iterations reached. The evidence gathered may be incomplete. ### Evidence Collected Found {len(evidence)} sources. Consider refining your query for more specific results. ### Citations {citations} --- *Consider searching with more specific terms or drug names.* """ ``` --- ## 4. The Gradio UI (`src/app.py`) Using Gradio 5 generator pattern for real-time streaming. ```python """Gradio UI for DeepCritical agent.""" import asyncio import gradio as gr from typing import AsyncGenerator from src.orchestrator import Orchestrator from src.tools.pubmed import PubMedTool from src.tools.clinicaltrials import ClinicalTrialsTool from src.tools.biorxiv import BioRxivTool from src.tools.search_handler import SearchHandler from src.agent_factory.judges import JudgeHandler, HFInferenceJudgeHandler from src.utils.models import OrchestratorConfig, AgentEvent def create_orchestrator( user_api_key: str | None = None, api_provider: str = "openai", ) -> tuple[Orchestrator, str]: """ Create an orchestrator instance. Args: user_api_key: Optional user-provided API key (BYOK) api_provider: API provider ("openai" or "anthropic") Returns: Tuple of (Configured Orchestrator instance, backend_name) Priority: 1. User-provided API key → JudgeHandler (OpenAI/Anthropic) 2. Environment API key → JudgeHandler (OpenAI/Anthropic) 3. No key → HFInferenceJudgeHandler (FREE, automatic fallback chain) HF Inference Fallback Chain: 1. Llama 3.1 8B (requires HF_TOKEN for gated model) 2. Mistral 7B (may require token) 3. Zephyr 7B (ungated, always works) """ import os # Create search tools search_handler = SearchHandler( tools=[PubMedTool(), ClinicalTrialsTool(), BioRxivTool()], timeout=30.0, ) # Determine which judge to use has_env_key = bool(os.getenv("OPENAI_API_KEY") or os.getenv("ANTHROPIC_API_KEY")) has_user_key = bool(user_api_key) has_hf_token = bool(os.getenv("HF_TOKEN")) if has_user_key: # User provided their own key judge_handler = JudgeHandler(model=None) backend_name = f"your {api_provider.upper()} API key" elif has_env_key: # Environment has API key configured judge_handler = JudgeHandler(model=None) backend_name = "configured API key" else: # Use FREE HuggingFace Inference with automatic fallback judge_handler = HFInferenceJudgeHandler() if has_hf_token: backend_name = "HuggingFace Inference (Llama 3.1)" else: backend_name = "HuggingFace Inference (free tier)" # Create orchestrator config = OrchestratorConfig( max_iterations=5, max_results_per_tool=10, ) return Orchestrator( search_handler=search_handler, judge_handler=judge_handler, config=config, ), backend_name async def research_agent( message: str, history: list[dict], api_key: str = "", api_provider: str = "openai", ) -> AsyncGenerator[str, None]: """ Gradio chat function that runs the research agent. Args: message: User's research question history: Chat history (Gradio format) api_key: Optional user-provided API key (BYOK) api_provider: API provider ("openai" or "anthropic") Yields: Markdown-formatted responses for streaming """ if not message.strip(): yield "Please enter a research question." return import os # Clean user-provided API key user_api_key = api_key.strip() if api_key else None # Create orchestrator with appropriate judge orchestrator, backend_name = create_orchestrator( user_api_key=user_api_key, api_provider=api_provider, ) # Determine icon based on backend has_hf_token = bool(os.getenv("HF_TOKEN")) if "HuggingFace" in backend_name: icon = "🤗" extra_note = ( "\n*For premium analysis, enter an OpenAI or Anthropic API key.*" if not has_hf_token else "" ) else: icon = "🔑" extra_note = "" # Inform user which backend is being used yield f"{icon} **Using {backend_name}**{extra_note}\n\n" # Run the agent and stream events response_parts = [] try: async for event in orchestrator.run(message): # Format event as markdown event_md = event.to_markdown() response_parts.append(event_md) # If complete, show full response if event.type == "complete": yield event.message else: # Show progress yield "\n\n".join(response_parts) except Exception as e: yield f"❌ **Error**: {str(e)}" def create_demo() -> gr.Blocks: """ Create the Gradio demo interface. Returns: Configured Gradio Blocks interface """ with gr.Blocks( title="DeepCritical - Drug Repurposing Research Agent", theme=gr.themes.Soft(), ) as demo: gr.Markdown(""" # 🧬 DeepCritical ## AI-Powered Drug Repurposing Research Agent Ask questions about potential drug repurposing opportunities. The agent will search PubMed and the web, evaluate evidence, and provide recommendations. **Example questions:** - "What drugs could be repurposed for Alzheimer's disease?" - "Is metformin effective for cancer treatment?" - "What existing medications show promise for Long COVID?" """) # Note: additional_inputs render in an accordion below the chat input gr.ChatInterface( fn=research_agent, examples=[ [ "What drugs could be repurposed for Alzheimer's disease?", "simple", "", "openai", ], [ "Is metformin effective for treating cancer?", "simple", "", "openai", ], ], additional_inputs=[ gr.Radio( choices=["simple", "magentic"], value="simple", label="Orchestrator Mode", info="Simple: Linear | Magentic: Multi-Agent (OpenAI)", ), gr.Textbox( label="API Key (Optional - Bring Your Own Key)", placeholder="sk-... or sk-ant-...", type="password", info="Enter your own API key for full AI analysis. Never stored.", ), gr.Radio( choices=["openai", "anthropic"], value="openai", label="API Provider", info="Select the provider for your API key", ), ], ) gr.Markdown(""" --- **Note**: This is a research tool and should not be used for medical decisions. Always consult healthcare professionals for medical advice. Built with 🤖 PydanticAI + 🔬 PubMed + 🦆 DuckDuckGo """) return demo def main(): """Run the Gradio app.""" demo = create_demo() demo.launch( server_name="0.0.0.0", server_port=7860, share=False, ) if __name__ == "__main__": main() ``` --- ## 5. TDD Workflow ### Test File: `tests/unit/test_orchestrator.py` ```python """Unit tests for Orchestrator.""" import pytest from unittest.mock import AsyncMock, MagicMock from src.utils.models import ( Evidence, Citation, SearchResult, JudgeAssessment, AssessmentDetails, OrchestratorConfig, ) class TestOrchestrator: """Tests for Orchestrator.""" @pytest.fixture def mock_search_handler(self): """Create a mock search handler.""" handler = AsyncMock() handler.execute = AsyncMock(return_value=SearchResult( query="test", evidence=[ Evidence( content="Test content", citation=Citation( source="pubmed", title="Test Title", url="https://pubmed.ncbi.nlm.nih.gov/12345/", date="2024-01-01", ), ), ], sources_searched=["pubmed"], total_found=1, errors=[], )) return handler @pytest.fixture def mock_judge_sufficient(self): """Create a mock judge that returns sufficient.""" handler = AsyncMock() handler.assess = AsyncMock(return_value=JudgeAssessment( details=AssessmentDetails( mechanism_score=8, mechanism_reasoning="Good mechanism", clinical_evidence_score=7, clinical_reasoning="Good clinical", drug_candidates=["Drug A"], key_findings=["Finding 1"], ), sufficient=True, confidence=0.85, recommendation="synthesize", next_search_queries=[], reasoning="Evidence is sufficient", )) return handler @pytest.fixture def mock_judge_insufficient(self): """Create a mock judge that returns insufficient.""" handler = AsyncMock() handler.assess = AsyncMock(return_value=JudgeAssessment( details=AssessmentDetails( mechanism_score=4, mechanism_reasoning="Weak mechanism", clinical_evidence_score=3, clinical_reasoning="Weak clinical", drug_candidates=[], key_findings=[], ), sufficient=False, confidence=0.3, recommendation="continue", next_search_queries=["more specific query"], reasoning="Need more evidence", )) return handler @pytest.mark.asyncio async def test_orchestrator_completes_with_sufficient_evidence( self, mock_search_handler, mock_judge_sufficient, ): """Orchestrator should complete when evidence is sufficient.""" from src.orchestrator import Orchestrator config = OrchestratorConfig(max_iterations=5) orchestrator = Orchestrator( search_handler=mock_search_handler, judge_handler=mock_judge_sufficient, config=config, ) events = [] async for event in orchestrator.run("test query"): events.append(event) # Should have started, searched, judged, and completed event_types = [e.type for e in events] assert "started" in event_types assert "searching" in event_types assert "search_complete" in event_types assert "judging" in event_types assert "judge_complete" in event_types assert "complete" in event_types # Should only have 1 iteration complete_event = [e for e in events if e.type == "complete"][0] assert complete_event.iteration == 1 @pytest.mark.asyncio async def test_orchestrator_loops_when_insufficient( self, mock_search_handler, mock_judge_insufficient, ): """Orchestrator should loop when evidence is insufficient.""" from src.orchestrator import Orchestrator config = OrchestratorConfig(max_iterations=3) orchestrator = Orchestrator( search_handler=mock_search_handler, judge_handler=mock_judge_insufficient, config=config, ) events = [] async for event in orchestrator.run("test query"): events.append(event) # Should have looping events event_types = [e.type for e in events] assert event_types.count("looping") >= 2 # At least 2 loop events # Should hit max iterations complete_event = [e for e in events if e.type == "complete"][0] assert complete_event.data.get("max_reached") is True @pytest.mark.asyncio async def test_orchestrator_respects_max_iterations( self, mock_search_handler, mock_judge_insufficient, ): """Orchestrator should stop at max_iterations.""" from src.orchestrator import Orchestrator config = OrchestratorConfig(max_iterations=2) orchestrator = Orchestrator( search_handler=mock_search_handler, judge_handler=mock_judge_insufficient, config=config, ) events = [] async for event in orchestrator.run("test query"): events.append(event) # Should have exactly 2 iterations max_iteration = max(e.iteration for e in events) assert max_iteration == 2 @pytest.mark.asyncio async def test_orchestrator_handles_search_error(self): """Orchestrator should handle search errors gracefully.""" from src.orchestrator import Orchestrator mock_search = AsyncMock() mock_search.execute = AsyncMock(side_effect=Exception("Search failed")) mock_judge = AsyncMock() mock_judge.assess = AsyncMock(return_value=JudgeAssessment( details=AssessmentDetails( mechanism_score=0, mechanism_reasoning="N/A", clinical_evidence_score=0, clinical_reasoning="N/A", drug_candidates=[], key_findings=[], ), sufficient=False, confidence=0.0, recommendation="continue", next_search_queries=["retry query"], reasoning="Search failed", )) config = OrchestratorConfig(max_iterations=2) orchestrator = Orchestrator( search_handler=mock_search, judge_handler=mock_judge, config=config, ) events = [] async for event in orchestrator.run("test query"): events.append(event) # Should have error events event_types = [e.type for e in events] assert "error" in event_types @pytest.mark.asyncio async def test_orchestrator_deduplicates_evidence(self, mock_judge_insufficient): """Orchestrator should deduplicate evidence by URL.""" from src.orchestrator import Orchestrator # Search returns same evidence each time duplicate_evidence = Evidence( content="Duplicate content", citation=Citation( source="pubmed", title="Same Title", url="https://pubmed.ncbi.nlm.nih.gov/12345/", # Same URL date="2024-01-01", ), ) mock_search = AsyncMock() mock_search.execute = AsyncMock(return_value=SearchResult( query="test", evidence=[duplicate_evidence], sources_searched=["pubmed"], total_found=1, errors=[], )) config = OrchestratorConfig(max_iterations=2) orchestrator = Orchestrator( search_handler=mock_search, judge_handler=mock_judge_insufficient, config=config, ) events = [] async for event in orchestrator.run("test query"): events.append(event) # Second search_complete should show 0 new evidence search_complete_events = [e for e in events if e.type == "search_complete"] assert len(search_complete_events) == 2 # First iteration should have 1 new assert search_complete_events[0].data["new_count"] == 1 # Second iteration should have 0 new (duplicate) assert search_complete_events[1].data["new_count"] == 0 class TestAgentEvent: """Tests for AgentEvent.""" def test_to_markdown(self): """AgentEvent should format to markdown correctly.""" from src.utils.models import AgentEvent event = AgentEvent( type="searching", message="Searching for: metformin alzheimer", iteration=1, ) md = event.to_markdown() assert "🔍" in md assert "SEARCHING" in md assert "metformin alzheimer" in md def test_complete_event_icon(self): """Complete event should have celebration icon.""" from src.utils.models import AgentEvent event = AgentEvent( type="complete", message="Done!", iteration=3, ) md = event.to_markdown() assert "🎉" in md ``` --- ## 6. Dockerfile ```dockerfile # Dockerfile for DeepCritical FROM python:3.11-slim # Set working directory WORKDIR /app # Install system dependencies RUN apt-get update && apt-get install -y \ git \ && rm -rf /var/lib/apt/lists/* # Install uv RUN pip install uv # Copy project files COPY pyproject.toml . COPY src/ src/ # Install dependencies RUN uv pip install --system . # Expose port EXPOSE 7860 # Set environment variables ENV GRADIO_SERVER_NAME=0.0.0.0 ENV GRADIO_SERVER_PORT=7860 # Run the app CMD ["python", "-m", "src.app"] ``` --- ## 7. HuggingFace Spaces Configuration Create `README.md` header for HuggingFace Spaces: ```markdown --- title: DeepCritical emoji: 🧬 colorFrom: blue colorTo: purple sdk: gradio sdk_version: 5.0.0 app_file: src/app.py pinned: false license: mit --- # DeepCritical AI-Powered Drug Repurposing Research Agent ``` --- ## 8. Implementation Checklist - [ ] Add `AgentEvent` and `OrchestratorConfig` models to `src/utils/models.py` - [ ] Implement `src/orchestrator.py` with full Orchestrator class - [ ] Implement `src/app.py` with Gradio interface - [ ] Create `tests/unit/test_orchestrator.py` with all tests - [ ] Create `Dockerfile` for deployment - [ ] Update project `README.md` with usage instructions - [ ] Run `uv run pytest tests/unit/test_orchestrator.py -v` — **ALL TESTS MUST PASS** - [ ] Test locally: `uv run python -m src.app` - [ ] Commit: `git commit -m "feat: phase 4 orchestrator and UI complete"` --- ## 9. Definition of Done Phase 4 is **COMPLETE** when: 1. All unit tests pass: `uv run pytest tests/unit/test_orchestrator.py -v` 2. Orchestrator correctly loops Search -> Judge until sufficient 3. Max iterations limit is enforced 4. Graceful error handling throughout 5. Gradio UI streams events in real-time 6. Can run locally: ```bash # Start the UI uv run python -m src.app # Open browser to http://localhost:7860 # Enter a question like "What drugs could be repurposed for Alzheimer's disease?" # Watch the agent search, evaluate, and respond ``` 7. Can run the full flow in Python: ```python import asyncio from src.orchestrator import Orchestrator from src.tools.pubmed import PubMedTool from src.tools.biorxiv import BioRxivTool from src.tools.clinicaltrials import ClinicalTrialsTool from src.tools.search_handler import SearchHandler from src.agent_factory.judges import HFInferenceJudgeHandler, MockJudgeHandler from src.utils.models import OrchestratorConfig async def test_full_flow(): # Create components search_handler = SearchHandler([PubMedTool(), ClinicalTrialsTool(), BioRxivTool()]) # Option 1: Use FREE HuggingFace Inference (real AI analysis) judge_handler = HFInferenceJudgeHandler() # Option 2: Use MockJudgeHandler for UNIT TESTING ONLY # judge_handler = MockJudgeHandler() config = OrchestratorConfig(max_iterations=3) # Create orchestrator orchestrator = Orchestrator( search_handler=search_handler, judge_handler=judge_handler, config=config, ) # Run and collect events print("Starting agent...") async for event in orchestrator.run("metformin alzheimer"): print(event.to_markdown()) print("\nDone!") asyncio.run(test_full_flow()) ``` **Important**: `MockJudgeHandler` is for **unit testing only**. For actual demo/production use, always use `HFInferenceJudgeHandler` (free) or `JudgeHandler` (with API key). --- ## 10. Deployment Verification After deployment to HuggingFace Spaces: 1. **Visit the Space URL** and verify the UI loads 2. **Test with example queries**: - "What drugs could be repurposed for Alzheimer's disease?" - "Is metformin effective for cancer treatment?" 3. **Verify streaming** - events should appear in real-time 4. **Check error handling** - try an empty query, verify graceful handling 5. **Monitor logs** for any errors --- ## Project Complete! 🎉 When Phase 4 is done, the DeepCritical MVP is complete: - **Phase 1**: Foundation (uv, pytest, config) ✅ - **Phase 2**: Search Slice (PubMed, DuckDuckGo) ✅ - **Phase 3**: Judge Slice (PydanticAI, structured output) ✅ - **Phase 4**: Orchestrator + UI (Gradio, streaming) ✅ The agent can: 1. Accept a drug repurposing question 2. Search PubMed and the web for evidence 3. Evaluate evidence quality with an LLM 4. Loop until confident or max iterations 5. Synthesize a research-backed recommendation 6. Display real-time progress in a beautiful UI