Update app.py
Browse files
app.py
CHANGED
|
@@ -2,23 +2,19 @@ import joblib
|
|
| 2 |
from transformers import AutoFeatureExtractor, Wav2Vec2Model
|
| 3 |
import torch
|
| 4 |
import librosa
|
| 5 |
-
import numpy as np
|
| 6 |
-
from sklearn.linear_model import LogisticRegression
|
| 7 |
-
import gradio as gr
|
| 8 |
-
import os
|
| 9 |
-
import torch.nn.functional as F
|
| 10 |
from scipy.special import expit
|
| 11 |
import json
|
| 12 |
-
|
| 13 |
|
| 14 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
|
|
|
|
|
|
|
| 16 |
class CustomWav2Vec2Model(Wav2Vec2Model):
|
| 17 |
def __init__(self, config):
|
| 18 |
super().__init__(config)
|
| 19 |
self.encoder.layers = self.encoder.layers[:9]
|
| 20 |
|
| 21 |
-
truncated_model = CustomWav2Vec2Model.from_pretrained("facebook/wav2vec2-xls-r-2b")
|
| 22 |
|
| 23 |
class HuggingFaceFeatureExtractor:
|
| 24 |
def __init__(self, model, feature_extractor_name):
|
|
@@ -38,10 +34,14 @@ class HuggingFaceFeatureExtractor:
|
|
| 38 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 39 |
with torch.no_grad():
|
| 40 |
outputs = self.model(**inputs, output_hidden_states=True)
|
| 41 |
-
return outputs.hidden_states[9]
|
| 42 |
|
|
|
|
|
|
|
| 43 |
FEATURE_EXTRACTOR = HuggingFaceFeatureExtractor(truncated_model, "facebook/wav2vec2-xls-r-2b")
|
| 44 |
-
classifier,scaler, thresh = joblib.load('
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def segment_audio(audio, sr, segment_duration):
|
| 47 |
segment_samples = int(segment_duration * sr)
|
|
@@ -60,37 +60,33 @@ def process_audio(input_data, segment_duration=10):
|
|
| 60 |
audio = audio[0]
|
| 61 |
segments = segment_audio(audio, sr, segment_duration)
|
| 62 |
segment_predictions = []
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
| 66 |
for idx, segment in enumerate(segments):
|
| 67 |
features = FEATURE_EXTRACTOR(segment, sr)
|
| 68 |
-
features_avg = torch.mean(features, dim=1).cpu().numpy()
|
|
|
|
| 69 |
decision_score = classifier.decision_function(features_avg)
|
| 70 |
decision_score_scaled = scaler.transform(decision_score.reshape(-1, 1)).flatten()
|
| 71 |
decision_value = decision_score_scaled[0]
|
| 72 |
pred = 1 if decision_value >= eer_threshold else 0
|
| 73 |
-
|
| 74 |
-
if pred == 1:
|
| 75 |
-
confidence_percentage = expit(decision_score).item()
|
| 76 |
-
else:
|
| 77 |
confidence_percentage = 1 - expit(decision_score).item()
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
segment_predictions.append(pred)
|
| 80 |
-
confidence_scores.append(confidence_percentage)
|
| 81 |
-
|
| 82 |
output_dict = {
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
"segment": idx + 1,
|
| 87 |
-
"prediction": "real" if pred == 1 else "fake",
|
| 88 |
-
"confidence": round(conf * 100, 2)
|
| 89 |
-
}
|
| 90 |
-
for idx, (pred, conf) in enumerate(zip(segment_predictions, confidence_scores))
|
| 91 |
-
]
|
| 92 |
-
}
|
| 93 |
-
|
| 94 |
json_output = json.dumps(output_dict, indent=4)
|
| 95 |
print(json_output)
|
| 96 |
return json_output
|
|
|
|
| 2 |
from transformers import AutoFeatureExtractor, Wav2Vec2Model
|
| 3 |
import torch
|
| 4 |
import librosa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from scipy.special import expit
|
| 6 |
import json
|
| 7 |
+
import os
|
| 8 |
|
| 9 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 10 |
|
| 11 |
+
|
| 12 |
+
|
| 13 |
class CustomWav2Vec2Model(Wav2Vec2Model):
|
| 14 |
def __init__(self, config):
|
| 15 |
super().__init__(config)
|
| 16 |
self.encoder.layers = self.encoder.layers[:9]
|
| 17 |
|
|
|
|
| 18 |
|
| 19 |
class HuggingFaceFeatureExtractor:
|
| 20 |
def __init__(self, model, feature_extractor_name):
|
|
|
|
| 34 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 35 |
with torch.no_grad():
|
| 36 |
outputs = self.model(**inputs, output_hidden_states=True)
|
| 37 |
+
return outputs.hidden_states[9]
|
| 38 |
|
| 39 |
+
|
| 40 |
+
truncated_model = CustomWav2Vec2Model.from_pretrained(r"C:\Users\david\PycharmProjects\David2\model\wav2vec2-xls-r-2b_truncated")
|
| 41 |
FEATURE_EXTRACTOR = HuggingFaceFeatureExtractor(truncated_model, "facebook/wav2vec2-xls-r-2b")
|
| 42 |
+
classifier, scaler, thresh = joblib.load(r'C:\Users\david\PycharmProjects\David2\model\logreg_margin_pruning_ALL_with_scaler_threshold.joblib')
|
| 43 |
+
|
| 44 |
+
|
| 45 |
|
| 46 |
def segment_audio(audio, sr, segment_duration):
|
| 47 |
segment_samples = int(segment_duration * sr)
|
|
|
|
| 60 |
audio = audio[0]
|
| 61 |
segments = segment_audio(audio, sr, segment_duration)
|
| 62 |
segment_predictions = []
|
| 63 |
+
confidence_scores_fake_sum = 0
|
| 64 |
+
fake_segments = 0
|
| 65 |
+
confidence_scores_real_sum = 0
|
| 66 |
+
real_segments = 0
|
| 67 |
+
eer_threshold = thresh - 5e-3 # small margin error due to feature extractor space differences
|
| 68 |
+
#print(eer_threshold)
|
| 69 |
for idx, segment in enumerate(segments):
|
| 70 |
features = FEATURE_EXTRACTOR(segment, sr)
|
| 71 |
+
features_avg = torch.mean(features, dim=1).cpu().numpy()
|
| 72 |
+
features_avg = features_avg.reshape(1, -1)
|
| 73 |
decision_score = classifier.decision_function(features_avg)
|
| 74 |
decision_score_scaled = scaler.transform(decision_score.reshape(-1, 1)).flatten()
|
| 75 |
decision_value = decision_score_scaled[0]
|
| 76 |
pred = 1 if decision_value >= eer_threshold else 0
|
| 77 |
+
if pred == 0:
|
|
|
|
|
|
|
|
|
|
| 78 |
confidence_percentage = 1 - expit(decision_score).item()
|
| 79 |
+
confidence_scores_fake_sum +=confidence_percentage
|
| 80 |
+
fake_segments +=1
|
| 81 |
+
else:
|
| 82 |
+
confidence_percentage = expit(decision_score).item()
|
| 83 |
+
confidence_scores_real_sum +=confidence_percentage
|
| 84 |
+
real_segments +=1
|
| 85 |
segment_predictions.append(pred)
|
|
|
|
|
|
|
| 86 |
output_dict = {
|
| 87 |
+
"label": "real" if sum(segment_predictions) > (len(segment_predictions) / 2) else "fake",
|
| 88 |
+
"confidence score:": f'{confidence_scores_real_sum/real_segments:.2f}' if sum(segment_predictions) > (len(segment_predictions) / 2) else f'{confidence_scores_fake_sum/fake_segments:.2f}'
|
| 89 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
json_output = json.dumps(output_dict, indent=4)
|
| 91 |
print(json_output)
|
| 92 |
return json_output
|