File size: 15,946 Bytes
f3a4ad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import time
import json
import csv
import zipfile
from io import BytesIO
from typing import List, Dict, Optional, Callable
from PIL import Image
import traceback
class BatchProcessingManager:
"""
Manages batch processing of multiple images with progress tracking,
error handling, and result export functionality.
Follows the Facade pattern by delegating actual image processing
to the PixcribePipeline instance.
"""
def __init__(self, pipeline=None):
"""
Initialize the Batch Processing Manager.
Args:
pipeline: Reference to PixcribePipeline instance for processing images
"""
self.pipeline = pipeline
self.results = {} # Store processing results indexed by image number
self.timing_data = [] # Track processing time for each image
def process_batch(
self,
images: List[Image.Image],
platform: str = 'instagram',
yolo_variant: str = 'l',
language: str = 'zh',
progress_callback: Optional[Callable] = None
) -> Dict:
"""
Process a batch of images with progress tracking.
Args:
images: List of PIL Image objects to process (max 10)
platform: Target social media platform
yolo_variant: YOLO model variant ('m', 'l', 'x')
language: Caption language ('zh', 'en')
progress_callback: Optional callback function for progress updates
Returns:
Dictionary containing batch processing summary and results
Raises:
ValueError: If images list is empty or exceeds 10 images
"""
# Validate input
if not images:
raise ValueError("Images list cannot be empty")
if len(images) > 10:
raise ValueError("Maximum 10 images allowed per batch")
# Initialize results storage
self.results = {}
self.timing_data = []
total_images = len(images)
# Record batch start time
batch_start_time = time.time()
print(f"\n{'='*60}")
print(f"Starting batch processing: {total_images} images")
print(f"Platform: {platform} | Variant: {yolo_variant} | Language: {language}")
print(f"{'='*60}\n")
# Process each image
for idx, image in enumerate(images):
image_start_time = time.time()
image_index = idx + 1
try:
print(f"[{image_index}/{total_images}] Processing image {image_index}...")
# Call pipeline's process_image method
result = self.pipeline.process_image(
image=image,
platform=platform,
yolo_variant=yolo_variant,
language=language
)
# Store successful result
self.results[image_index] = {
'status': 'success',
'result': result,
'image_index': image_index,
'error': None
}
print(f"β Image {image_index} processed successfully")
except Exception as e:
# Store error result
error_trace = traceback.format_exc()
self.results[image_index] = {
'status': 'failed',
'result': None,
'image_index': image_index,
'error': {
'type': type(e).__name__,
'message': str(e),
'traceback': error_trace
}
}
print(f"β Image {image_index} failed: {str(e)}")
# Record processing time for this image
image_elapsed = time.time() - image_start_time
self.timing_data.append(image_elapsed)
# Calculate progress information
completed = image_index
percent = (completed / total_images) * 100
# Estimate remaining time based on average processing time
avg_time = sum(self.timing_data) / len(self.timing_data)
remaining_images = total_images - completed
estimated_remaining = avg_time * remaining_images
# Call progress callback if provided
if progress_callback:
progress_info = {
'current': completed,
'total': total_images,
'percent': percent,
'estimated_remaining': estimated_remaining,
'latest_result': self.results[image_index],
'image_index': image_index
}
progress_callback(progress_info)
# Calculate batch summary
batch_elapsed = time.time() - batch_start_time
total_processed = len(self.results)
total_failed = sum(1 for r in self.results.values() if r['status'] == 'failed')
total_success = total_processed - total_failed
print(f"\n{'='*60}")
print(f"Batch processing completed!")
print(f"Total: {total_processed} | Success: {total_success} | Failed: {total_failed}")
print(f"Total time: {batch_elapsed:.2f}s | Avg per image: {batch_elapsed/total_processed:.2f}s")
print(f"{'='*60}\n")
# Return batch summary
return {
'results': self.results,
'total_processed': total_processed,
'total_success': total_success,
'total_failed': total_failed,
'total_time': batch_elapsed,
'average_time_per_image': batch_elapsed / total_processed if total_processed > 0 else 0
}
def get_result(self, image_index: int) -> Optional[Dict]:
"""
Get processing result for a specific image.
Args:
image_index: Index of the image (1-based)
Returns:
Result dictionary or None if index doesn't exist
"""
return self.results.get(image_index)
def get_all_results(self) -> Dict:
"""
Get all processing results.
Returns:
Complete results dictionary
"""
return self.results
def clear_results(self):
"""Clear all stored results to free memory."""
self.results = {}
self.timing_data = []
print("β Batch results cleared")
def export_to_json(self, results: Dict, output_path: str) -> str:
"""
Export batch results to JSON format.
Args:
results: Results dictionary from process_batch
output_path: Path to save JSON file
Returns:
Path to the saved JSON file
"""
# Prepare export data
export_data = {
'batch_summary': {
'total_processed': results.get('total_processed', 0),
'total_success': results.get('total_success', 0),
'total_failed': results.get('total_failed', 0),
'total_time': results.get('total_time', 0),
'average_time_per_image': results.get('average_time_per_image', 0)
},
'images': []
}
# Process each image result
for img_idx, img_result in results.get('results', {}).items():
if img_result['status'] == 'success':
result_data = img_result['result']
image_export = {
'image_index': img_idx,
'status': 'success',
'captions': result_data.get('captions', []),
'detected_objects': [
det['class_name'] for det in result_data.get('detections', [])
],
'detected_brands': [
brand[0] if isinstance(brand, tuple) else brand
for brand in result_data.get('brands', [])
],
'scene_info': result_data.get('scene', {}),
'lighting': result_data.get('lighting', {})
}
else:
image_export = {
'image_index': img_idx,
'status': 'failed',
'error': img_result.get('error', {})
}
export_data['images'].append(image_export)
# Write to JSON file
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(export_data, f, ensure_ascii=False, indent=2)
print(f"β Batch results exported to JSON: {output_path}")
return output_path
def export_to_csv(self, results: Dict, output_path: str) -> str:
"""
Export batch results to CSV format.
Args:
results: Results dictionary from process_batch
output_path: Path to save CSV file
Returns:
Path to the saved CSV file
"""
# Define CSV headers
headers = [
'image_index',
'status',
'caption_professional',
'caption_creative',
'caption_authentic',
'detected_objects',
'detected_brands',
'hashtags'
]
# Prepare rows
rows = []
for img_idx, img_result in results.get('results', {}).items():
if img_result['status'] == 'success':
result_data = img_result['result']
captions = result_data.get('captions', [])
# Extract captions by tone
caption_professional = ''
caption_creative = ''
caption_authentic = ''
all_hashtags = []
for cap in captions:
tone = cap.get('tone', '').lower()
caption_text = cap.get('caption', '')
hashtags = cap.get('hashtags', [])
if 'professional' in tone:
caption_professional = caption_text
elif 'creative' in tone:
caption_creative = caption_text
elif 'authentic' in tone or 'casual' in tone:
caption_authentic = caption_text
all_hashtags.extend(hashtags)
# Remove duplicates from hashtags
all_hashtags = list(set(all_hashtags))
row = {
'image_index': img_idx,
'status': 'success',
'caption_professional': caption_professional,
'caption_creative': caption_creative,
'caption_authentic': caption_authentic,
'detected_objects': ', '.join([
det['class_name'] for det in result_data.get('detections', [])
]),
'detected_brands': ', '.join([
brand[0] if isinstance(brand, tuple) else brand
for brand in result_data.get('brands', [])
]),
'hashtags': ' '.join([f'#{tag}' for tag in all_hashtags])
}
else:
row = {
'image_index': img_idx,
'status': 'failed',
'caption_professional': '',
'caption_creative': '',
'caption_authentic': '',
'detected_objects': '',
'detected_brands': '',
'hashtags': ''
}
rows.append(row)
# Write to CSV file
with open(output_path, 'w', newline='', encoding='utf-8') as f:
writer = csv.DictWriter(f, fieldnames=headers)
writer.writeheader()
writer.writerows(rows)
print(f"β Batch results exported to CSV: {output_path}")
return output_path
def export_to_zip(self, results: Dict, images: List[Image.Image], output_path: str) -> str:
"""
Export batch results to ZIP archive with images and text files.
Args:
results: Results dictionary from process_batch
images: List of original PIL Image objects
output_path: Path to save ZIP file
Returns:
Path to the saved ZIP file
"""
with zipfile.ZipFile(output_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for img_idx, img_result in results.get('results', {}).items():
if img_result['status'] == 'success':
# Save original image
image_filename = f"image_{img_idx:03d}.jpg"
# Convert PIL image to bytes
img_buffer = BytesIO()
images[img_idx - 1].save(img_buffer, format='JPEG', quality=95)
img_buffer.seek(0)
zipf.writestr(image_filename, img_buffer.read())
# Save caption text file
text_filename = f"image_{img_idx:03d}.txt"
text_content = self._format_result_as_text(img_result['result'])
zipf.writestr(text_filename, text_content)
print(f"β Added to ZIP: {image_filename} and {text_filename}")
print(f"β Batch results exported to ZIP: {output_path}")
return output_path
def _format_result_as_text(self, result: Dict) -> str:
"""
Format a single image result as plain text for ZIP export.
Args:
result: Single image processing result dictionary
Returns:
Formatted text string
"""
lines = []
lines.append("=" * 60)
lines.append("PIXCRIBE - AI GENERATED SOCIAL MEDIA CONTENT")
lines.append("=" * 60)
lines.append("")
# Captions section
captions = result.get('captions', [])
for i, cap in enumerate(captions, 1):
tone = cap.get('tone', 'Unknown').upper()
caption_text = cap.get('caption', '')
hashtags = cap.get('hashtags', [])
lines.append(f"CAPTION {i} - {tone} STYLE")
lines.append("-" * 60)
lines.append(caption_text)
lines.append("")
lines.append("Hashtags:")
lines.append(' '.join([f'#{tag}' for tag in hashtags]))
lines.append("")
lines.append("")
# Detected objects section
detections = result.get('detections', [])
if detections:
lines.append("DETECTED OBJECTS")
lines.append("-" * 60)
object_names = [det['class_name'] for det in detections]
lines.append(', '.join(object_names))
lines.append("")
# Detected brands section
brands = result.get('brands', [])
if brands:
lines.append("DETECTED BRANDS")
lines.append("-" * 60)
brand_names = [
brand[0] if isinstance(brand, tuple) else brand
for brand in brands
]
lines.append(', '.join(brand_names))
lines.append("")
# Scene information
scene_info = result.get('scene', {})
if scene_info:
lines.append("SCENE ANALYSIS")
lines.append("-" * 60)
if 'lighting' in scene_info:
lighting = scene_info['lighting'].get('top', 'Unknown')
lines.append(f"Lighting: {lighting}")
if 'mood' in scene_info:
mood = scene_info['mood'].get('top', 'Unknown')
lines.append(f"Mood: {mood}")
lines.append("")
lines.append("=" * 60)
lines.append("Generated by Pixcribe V5 - AI Social Media Caption Generator")
lines.append("=" * 60)
return '\n'.join(lines)
print("β BatchProcessingManager defined")
|