File size: 12,799 Bytes
6a3bd1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import torch
import json
import re
from PIL import Image
from typing import List, Dict, Tuple
from datetime import datetime
from caption_generation_manager import CaptionGenerationManager

class BrandVerificationManager:
    """VLM-based brand verification and three-way voting system"""

    def __init__(self, caption_generator: CaptionGenerationManager = None):
        """
        Args:
            caption_generator: CaptionGenerationManager instance for VLM access
        """
        if caption_generator is None:
            caption_generator = CaptionGenerationManager()

        self.caption_generator = caption_generator

        # Confidence mapping for VLM responses
        self.confidence_map = {
            'high': 0.9,
            'medium': 0.7,
            'low': 0.5,
            'very high': 0.95,
            'very low': 0.3
        }

        print("✓ Brand Verification Manager initialized with VLM")

    def verify_brands(self, image: Image.Image, detected_brands: List[Tuple[str, float, list]]) -> Dict:
        """
        Use VLM to verify detected brands

        Args:
            image: PIL Image
            detected_brands: List of (brand_name, confidence, bbox) tuples

        Returns:
            Dictionary with verification results
        """
        if not detected_brands:
            return {
                'verified_brands': [],
                'false_positives': [],
                'additional_brands': [],
                'confidence': 0.0
            }

        # Construct verification prompt
        brand_list = ', '.join([f"{brand[0]} (confidence: {brand[1]:.2f})"
                                for brand in detected_brands[:3]])  # Top 3 brands

        verification_prompt = f"""Analyze this image carefully. Our computer vision system detected the following brands: {brand_list}.

            Please verify each brand identification:

            1. Are these brand identifications correct based on visible logos, patterns, text, or distinctive features?
            2. If incorrect, what brands do you actually see (if any)?
            3. Describe the visual evidence (logo shape, text, pattern, color scheme, hardware) that supports your conclusion.

            Respond in JSON format:
            {{
                "verified_brands": [
                    {{"name": "Brand Name", "confidence": "high/medium/low", "evidence": "description of visual evidence"}}
                ],
                "false_positives": ["brand names that were incorrectly detected"],
                "additional_brands": ["brands we missed but you can see"]
            }}

            IMPORTANT: Only include brands you can clearly identify with visual evidence. If unsure, use "low" confidence."""

        # Generate VLM response
        try:
            response = self._generate_vlm_response(image, verification_prompt)
            parsed_result = self._parse_verification_response(response)
            return parsed_result

        except Exception as e:
            print(f"VLM verification error: {e}")
            # Fallback to original detections
            return {
                'verified_brands': [
                    {'name': brand[0], 'confidence': 'medium', 'evidence': 'VLM verification failed'}
                    for brand in detected_brands
                ],
                'false_positives': [],
                'additional_brands': []
            }

    def three_way_voting(self, openclip_brands: List[Tuple], ocr_brands: Dict,
                          vlm_result: Dict) -> List[Tuple[str, float, list]]:
        """
        Three-way voting: OpenCLIP vs OCR vs VLM

        Args:
            openclip_brands: List of (brand_name, confidence, bbox) from OpenCLIP
            ocr_brands: Dict of {brand_name: (text_score, ocr_conf)} from OCR
            vlm_result: Verification result from VLM

        Returns:
            List of (brand_name, final_confidence, bbox) tuples
        """
        votes = {}  # brand_name -> {votes: int, sources: list, bbox: list}
        confidence_scores = {}  # brand_name -> list of (source, confidence)

        # Vote 1: OpenCLIP
        for brand_name, confidence, bbox in openclip_brands:
            if brand_name not in votes:
                votes[brand_name] = {'votes': 0, 'sources': [], 'bbox': bbox}
                confidence_scores[brand_name] = []

            votes[brand_name]['votes'] += 1
            votes[brand_name]['sources'].append('openclip')
            confidence_scores[brand_name].append(('openclip', confidence * 0.8))

        # Vote 2: OCR
        for brand_name, (text_score, ocr_conf) in ocr_brands.items():
            if brand_name not in votes:
                # OCR found a brand not detected by OpenCLIP
                votes[brand_name] = {'votes': 0, 'sources': [], 'bbox': None}
                confidence_scores[brand_name] = []

            votes[brand_name]['votes'] += 1
            votes[brand_name]['sources'].append('ocr')
            combined_ocr_score = (text_score + ocr_conf) / 2
            confidence_scores[brand_name].append(('ocr', combined_ocr_score * 0.7))

        # Vote 3: VLM (double weight - most reliable)
        for brand_info in vlm_result.get('verified_brands', []):
            brand_name = brand_info['name']
            vlm_confidence_level = brand_info.get('confidence', 'medium')
            vlm_confidence = self.confidence_map.get(vlm_confidence_level.lower(), 0.7)

            if brand_name not in votes:
                # VLM found a brand missed by both OpenCLIP and OCR
                votes[brand_name] = {'votes': 0, 'sources': [], 'bbox': None}
                confidence_scores[brand_name] = []

            votes[brand_name]['votes'] += 2  # VLM gets double vote
            votes[brand_name]['sources'].append('vlm')
            confidence_scores[brand_name].append(('vlm', vlm_confidence))

        # Remove false positives flagged by VLM
        for false_positive in vlm_result.get('false_positives', []):
            if false_positive in votes:
                # Reduce votes significantly
                votes[false_positive]['votes'] = max(0, votes[false_positive]['votes'] - 2)

        # Calculate final scores
        final_brands = []
        for brand_name, vote_info in votes.items():
            if vote_info['votes'] <= 0:
                continue  # Skip brands with no votes

            # Calculate weighted average confidence
            scores = confidence_scores.get(brand_name, [])
            if not scores:
                continue

            # VLM has highest weight, OpenCLIP medium, OCR lowest
            weighted_sum = 0.0
            weight_total = 0.0

            for source, score in scores:
                if source == 'vlm':
                    weight = 1.0
                elif source == 'openclip':
                    weight = 0.6
                else:  # ocr
                    weight = 0.4

                weighted_sum += score * weight
                weight_total += weight

            avg_confidence = weighted_sum / weight_total if weight_total > 0 else 0.0

            # Boost confidence if multiple sources agree
            if vote_info['votes'] >= 2:
                avg_confidence *= 1.15  # 15% boost for agreement

            # Cap at 0.95
            avg_confidence = min(avg_confidence, 0.95)

            # Only include if confidence is reasonable
            if avg_confidence > 0.30:
                final_brands.append((brand_name, avg_confidence, vote_info['bbox']))

        # Sort by confidence
        final_brands.sort(key=lambda x: x[1], reverse=True)

        return final_brands

    def extract_visual_evidence(self, image: Image.Image, brand_name: str) -> Dict:
        """
        Extract detailed visual evidence for identified brand

        Args:
            image: PIL Image
            brand_name: Identified brand name

        Returns:
            Dictionary with evidence description
        """
        evidence_prompt = f"""You identified {brand_name} in this image. Please describe the specific visual evidence:

            1. Logo appearance: Describe the logo's shape, style, color, and exact location in the image
            2. Text elements: What text did you see? (exact wording, font style, placement)
            3. Distinctive patterns: Any signature patterns, textures, or design elements
            4. Color scheme: Brand-specific colors used
            5. Product features: Distinctive product design characteristics

            Be specific and detailed. Focus on objective visual features."""

        try:
            evidence_description = self._generate_vlm_response(image, evidence_prompt)

            return {
                'brand': brand_name,
                'evidence_description': evidence_description,
                'timestamp': datetime.now().isoformat()
            }

        except Exception as e:
            return {
                'brand': brand_name,
                'evidence_description': f"Evidence extraction failed: {str(e)}",
                'timestamp': datetime.now().isoformat()
            }

    def _generate_vlm_response(self, image: Image.Image, prompt: str) -> str:
        """
        Generate VLM response for given image and prompt

        Args:
            image: PIL Image
            prompt: Text prompt

        Returns:
            VLM response string
        """
        from qwen_vl_utils import process_vision_info

        messages = [{
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": prompt}
            ]
        }]

        text = self.caption_generator.processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )

        image_inputs, video_inputs = process_vision_info(messages)
        inputs = self.caption_generator.processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt"
        ).to(self.caption_generator.model.device)

        # Generate with low temperature for factual responses
        generation_config = {
            'temperature': 0.3,  # Low temperature for factual verification
            'top_p': 0.9,
            'max_new_tokens': 300,
            'repetition_penalty': 1.1
        }

        generated_ids = self.caption_generator.model.generate(
            **inputs,
            **generation_config
        )

        # Trim input tokens
        generated_ids_trimmed = [
            out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
        ]

        output_text = self.caption_generator.processor.batch_decode(
            generated_ids_trimmed,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False
        )[0]

        return output_text

    def _parse_verification_response(self, response: str) -> Dict:
        """
        Parse VLM verification response

        Args:
            response: VLM response string

        Returns:
            Parsed dictionary
        """
        try:
            # Try to extract JSON from response
            json_match = re.search(r'\{.*\}', response, re.DOTALL)
            if json_match:
                result = json.loads(json_match.group())
                return result
        except json.JSONDecodeError:
            pass

        # Fallback: rule-based parsing
        return self._rule_based_parse(response)

    def _rule_based_parse(self, response: str) -> Dict:
        """
        Fallback rule-based parsing if JSON fails

        Args:
            response: VLM response string

        Returns:
            Parsed dictionary
        """
        result = {
            'verified_brands': [],
            'false_positives': [],
            'additional_brands': []
        }

        # Simple pattern matching
        lines = response.lower().split('\n')

        for line in lines:
            # Look for brand names mentioned with positive sentiment
            if any(word in line for word in ['correct', 'yes', 'visible', 'see', 'identified']):
                # Extract potential brand names (capitalize words)
                words = re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b', response)
                for word in words:
                    if len(word) > 2:  # Avoid short words
                        result['verified_brands'].append({
                            'name': word,
                            'confidence': 'medium',
                            'evidence': 'Extracted from VLM response'
                        })

        return result

print("✓ BrandVerificationManager (VLM verification and voting) defined")