File size: 9,128 Bytes
6a3bd1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from typing import List, Dict
import numpy as np

class DetectionFusionManager:
    """Integrate and prioritize detection results with intelligent lighting fusion"""

    def __init__(self, clip_manager):
        self.clip_manager = clip_manager

    def fuse_lighting_analysis(self, cv_lighting: Dict, clip_scene: Dict) -> Dict:
        """Intelligently fuse CV+Places365 lighting with CLIP scene understanding"""

        cv_lighting_type = cv_lighting.get('lighting_type', 'soft diffused light')
        cv_confidence = cv_lighting.get('confidence', 0.7)
        cv_features = cv_lighting.get('cv_features', {})

        # Get CLIP's lighting prediction
        clip_lighting_data = clip_scene.get('lighting', {})
        clip_lighting_type = clip_lighting_data.get('top', 'natural light')
        clip_confidence = clip_lighting_data.get('confidence', 0.5)

        # Intelligent fusion strategy:
        # 1. If CV has high confidence (>0.85), trust it
        # 2. If CV and CLIP semantically agree, boost confidence
        # 3. Otherwise, weighted average based on confidence

        if cv_confidence > 0.85:
            # High confidence from CV+Places365
            final_lighting = cv_lighting_type
            final_confidence = cv_confidence
            fusion_method = 'cv_dominant'

        elif self._lighting_semantically_similar(cv_lighting_type, clip_lighting_type):
            # Semantic agreement between CV and CLIP
            final_lighting = cv_lighting_type  # Prefer CV's specific description
            # Boost confidence when both agree
            final_confidence = min(cv_confidence * 1.15, 0.95)
            fusion_method = 'consensus'

        else:
            # Weighted fusion based on confidence
            cv_weight = cv_confidence / (cv_confidence + clip_confidence)
            clip_weight = 1.0 - cv_weight

            # If CV weight is higher, use CV result
            if cv_weight > 0.6:
                final_lighting = cv_lighting_type
                final_confidence = cv_confidence * 0.9
                fusion_method = 'cv_weighted'
            else:
                # Use more generic description when uncertain
                final_lighting = self._generalize_lighting_description(
                    cv_lighting_type, clip_lighting_type, cv_features
                )
                final_confidence = (cv_confidence * cv_weight + clip_confidence * clip_weight) * 0.85
                fusion_method = 'generalized'

        return {
            'lighting_type': final_lighting,
            'confidence': min(final_confidence, 0.95),
            'cv_analysis': cv_lighting_type,
            'clip_prediction': clip_lighting_type,
            'fusion_method': fusion_method,
            'cv_confidence': cv_confidence,
            'clip_confidence': clip_confidence
        }

    def _lighting_semantically_similar(self, cv_type: str, clip_type: str) -> bool:
        """Check if two lighting descriptions are semantically similar"""
        # Define semantic similarity groups
        similarity_groups = [
            {'soft', 'diffused', 'overcast', 'cloudy'},
            {'bright', 'sunny', 'sunlight', 'clear'},
            {'warm', 'golden', 'amber', 'evening'},
            {'natural', 'daylight', 'outdoor'},
            {'cool', 'blue', 'twilight'},
        ]

        cv_words = set(cv_type.lower().split())
        clip_words = set(clip_type.lower().split())

        # Check if both descriptions share words from same semantic group
        for group in similarity_groups:
            cv_match = cv_words & group
            clip_match = clip_words & group
            if cv_match and clip_match:
                return True

        # Direct word overlap
        common_words = cv_words & clip_words
        return len(common_words) >= 1

    def _generalize_lighting_description(self, cv_type: str, clip_type: str,
                                         cv_features: Dict) -> str:
        """Generate a generalized lighting description when CV and CLIP disagree"""

        brightness = cv_features.get('brightness', 128)
        contrast = cv_features.get('contrast', 50)
        color_temp = cv_features.get('color_temp', 1.0)

        # Use feature-based generalization (not hard thresholds)
        brightness_norm = brightness / 255.0
        contrast_norm = min(contrast / 100.0, 1.0)

        # Decision tree based on physical features
        if contrast_norm < 0.5:
            # Low contrast
            if color_temp < 1.0:
                return 'soft diffused light'
            else:
                return 'warm ambient light'
        elif brightness_norm > 0.7:
            # High brightness
            return 'natural daylight'
        elif color_temp > 1.1:
            # Warm temperature
            return 'warm ambient light'
        else:
            # Default safe description
            return 'soft diffused light'

    def analyze_composition(self, image, detections: List[Dict]) -> Dict:
        """Analyze image composition"""
        if not detections:
            return {'composition_type': 'empty', 'vertical_ratio': 0.0}

        # Calculate vertical element ratio
        vertical_objects = [
            d for d in detections
            if (d['bbox'][3] - d['bbox'][1]) > (d['bbox'][2] - d['bbox'][0])
        ]
        vertical_ratio = len(vertical_objects) / max(len(detections), 1)

        # Determine composition type
        if vertical_ratio > 0.6:
            composition_type = 'urban canyon'
        elif vertical_ratio > 0.4:
            composition_type = 'vertical emphasis'
        else:
            composition_type = 'standard street view'

        return {
            'composition_type': composition_type,
            'vertical_ratio': vertical_ratio,
            'vertical_objects_count': len(vertical_objects),
            'total_objects': len(detections)
        }

    def fuse_detections(self, yolo_results: List[Dict], unknown_regions: List[Dict],
                       scene_info: Dict, image=None, cv_lighting: Dict = None) -> Dict:
        """Fuse all detection results with intelligent lighting fusion"""
        all_detections = []

        # Process YOLO detections with attention scores
        for det in yolo_results:
            attention_score = self._calculate_attention_score(det)
            det['attention_score'] = attention_score
            all_detections.append(det)

        # Classify unknown regions using OpenCLIP
        for region in unknown_regions:
            if 'image' not in region:
                continue

            classification = self.clip_manager.classify_hierarchical(region['image'])

            detection = {
                'class_name': classification['top_prediction'],
                'bbox': region['bbox'],
                'confidence': classification.get('confidence', 0.5),
                'attention_score': region.get('saliency_score', 0.5),
                'source': 'openclip'
            }
            all_detections.append(detection)

        # Sort by attention score
        ranked_detections = sorted(
            all_detections,
            key=lambda x: x['attention_score'],
            reverse=True
        )

        # Filter top 15
        filtered = []
        for det in ranked_detections:
            if len(filtered) >= 15:
                if det.get('brand') and det.get('brand_confidence', 0) > 0.45:
                    filtered.append(det)
                else:
                    break
            else:
                filtered.append(det)

        # Analyze composition
        composition = self.analyze_composition(image, filtered) if image else {}

        # Intelligent lighting fusion
        if cv_lighting:
            fused_lighting = self.fuse_lighting_analysis(cv_lighting, scene_info)
            # Update scene_info with fused lighting
            scene_info['lighting'] = {
                'top': fused_lighting['lighting_type'],
                'confidence': fused_lighting['confidence'],
                'fusion_details': fused_lighting
            }

        return {
            'detections': filtered,
            'scene_info': scene_info,
            'composition': composition,
            'total_objects': len(all_detections)
        }

    def _calculate_attention_score(self, detection: Dict) -> float:
        """Calculate attention score based on position, size, and confidence"""
        bbox = detection['bbox']
        x1, y1, x2, y2 = bbox

        center_x = (x1 + x2) / 2
        center_y = (y1 + y2) / 2

        if x2 > 100:
            position_score = 0.5
        else:
            position_score = 1.0 - (abs(center_x - 0.5) + abs(center_y - 0.5))

        area = abs((x2 - x1) * (y2 - y1))
        if x2 > 100:
            area = area / (1000 * 1000)
        size_score = min(area, 0.5)

        conf_score = detection.get('confidence', 0.5)

        attention = (
            0.3 * position_score +
            0.3 * size_score +
            0.4 * conf_score
        )

        return attention

print("✓ DetectionFusionManager (V2 with intelligent fusion) defined")