File size: 29,185 Bytes
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
import cv2
import numpy as np
from PIL import Image, ImageFilter, ImageDraw
import logging
from typing import Optional, Tuple
from scipy.ndimage import binary_erosion, binary_dilation
import io
import gc
import torch
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from rembg import remove, new_session

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

class MaskGenerator:
    """
    Intelligent mask generation using deep learning models with traditional fallback.
    Priority: BiRefNet > UΒ²-Net (rembg) > Traditional gradient-based methods
    """

    def __init__(self, max_image_size: int = 1024, device: str = "auto"):
        self.max_image_size = max_image_size
        self.device = self._setup_device(device)

        # BiRefNet model (lazy loading)
        self._birefnet_model = None
        self._birefnet_transform = None

        # Log initialization
        logger.info(f"🎭 MaskGenerator initialized on {self.device}")

    def _setup_device(self, device: str) -> str:
        """Setup computation device"""
        if device == "auto":
            if torch.cuda.is_available():
                return "cuda"
            elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
                return "mps"
            return "cpu"
        return device

    def _load_birefnet_model(self) -> bool:
        """
        Lazy load BiRefNet model for memory efficiency.
        Returns True if model loaded successfully, False otherwise.
        """
        if self._birefnet_model is not None:
            return True

        try:
            logger.info("πŸ“₯ Loading BiRefNet model (ZhengPeng7/BiRefNet)...")

            # Load model with fp16 for memory efficiency on GPU
            dtype = torch.float16 if self.device == "cuda" else torch.float32

            self._birefnet_model = AutoModelForImageSegmentation.from_pretrained(
                "ZhengPeng7/BiRefNet",
                trust_remote_code=True,
                torch_dtype=dtype
            )
            self._birefnet_model.to(self.device)
            self._birefnet_model.eval()

            # Define preprocessing transform
            self._birefnet_transform = transforms.Compose([
                transforms.Resize((1024, 1024)),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ])

            logger.info("βœ… BiRefNet model loaded successfully")
            return True

        except Exception as e:
            logger.error(f"❌ Failed to load BiRefNet: {e}")
            self._birefnet_model = None
            self._birefnet_transform = None
            return False

    def _unload_birefnet_model(self):
        """Unload BiRefNet model to free memory"""
        if self._birefnet_model is not None:
            del self._birefnet_model
            self._birefnet_model = None
            self._birefnet_transform = None

            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            gc.collect()
            logger.info("🧹 BiRefNet model unloaded")

    def apply_guided_filter(
        self,
        mask: np.ndarray,
        guide_image: Image.Image,
        radius: int = 8,
        eps: float = 0.01
    ) -> np.ndarray:
        """
        Apply guided filter to mask for edge-preserving smoothing.
        Falls back to Gaussian blur if guided filter is not available.

        Args:
            mask: Input mask as numpy array (0-255)
            guide_image: Original image to use as guide
            radius: Filter radius (larger = more smoothing)
            eps: Regularization parameter (smaller = more edge-preserving)

        Returns:
            Filtered mask as numpy array (0-255)
        """
        try:
            # Convert guide image to grayscale
            guide_gray = np.array(guide_image.convert('L')).astype(np.float32) / 255.0
            mask_float = mask.astype(np.float32) / 255.0

            logger.info(f"πŸ”§ Applying guided filter (radius={radius}, eps={eps})")

            # Apply guided filter
            filtered = cv2.ximgproc.guidedFilter(
                guide=guide_gray,
                src=mask_float,
                radius=radius,
                eps=eps
            )

            # Convert back to 0-255 range
            result = (np.clip(filtered, 0, 1) * 255).astype(np.uint8)
            logger.info("βœ… Guided filter applied successfully")
            return result

        except Exception as e:
            logger.error(f"❌ Guided filter failed: {e}, using original mask")
            return mask

    def try_birefnet_mask(self, original_image: Image.Image) -> Optional[Image.Image]:
        """
        Generate foreground mask using BiRefNet model.
        BiRefNet provides high-quality segmentation with clean edges.

        Args:
            original_image: Input PIL Image

        Returns:
            PIL Image (L mode) mask or None if failed
        """
        try:
            # Lazy load model
            if not self._load_birefnet_model():
                return None

            logger.info("πŸ€– Starting BiRefNet foreground extraction...")
            original_size = original_image.size

            # Convert to RGB if needed
            if original_image.mode != 'RGB':
                image_rgb = original_image.convert('RGB')
            else:
                image_rgb = original_image

            # Preprocess image
            input_tensor = self._birefnet_transform(image_rgb).unsqueeze(0)

            # Move to device with appropriate dtype
            if self.device == "cuda":
                input_tensor = input_tensor.to(self.device, dtype=torch.float16)
            else:
                input_tensor = input_tensor.to(self.device)

            # Run inference
            with torch.no_grad():
                outputs = self._birefnet_model(input_tensor)

                # BiRefNet outputs a list, get the final prediction
                if isinstance(outputs, (list, tuple)):
                    pred = outputs[-1]
                else:
                    pred = outputs

                # Sigmoid to get probability map
                pred = torch.sigmoid(pred)

                # Convert to numpy
                pred_np = pred.squeeze().cpu().numpy()

            # Convert to 0-255 range
            mask_array = (pred_np * 255).astype(np.uint8)

            # Resize back to original size
            mask_pil = Image.fromarray(mask_array, mode='L')
            mask_pil = mask_pil.resize(original_size, Image.LANCZOS)
            mask_array = np.array(mask_pil)

            # Quality check
            mean_val = mask_array.mean()
            nonzero_ratio = np.count_nonzero(mask_array > 50) / mask_array.size

            logger.info(f"πŸ“Š BiRefNet mask stats - Mean: {mean_val:.1f}, Coverage: {nonzero_ratio:.1%}")

            if mean_val < 10:
                logger.warning("⚠️ BiRefNet mask too weak, falling back")
                return None

            if nonzero_ratio < 0.03:
                logger.warning("⚠️ BiRefNet foreground coverage too low, falling back")
                return None

            # Light post-processing for edge refinement
            # Use morphological operations to clean up
            kernel_small = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
            mask_array = cv2.morphologyEx(mask_array, cv2.MORPH_CLOSE, kernel_small)

            logger.info("βœ… BiRefNet mask generation successful!")
            return Image.fromarray(mask_array, mode='L')

        except torch.cuda.OutOfMemoryError:
            logger.error("❌ BiRefNet: GPU memory exhausted")
            self._unload_birefnet_model()
            return None

        except Exception as e:
            logger.error(f"❌ BiRefNet mask generation failed: {e}")
            import traceback
            logger.error(f"πŸ“ Traceback: {traceback.format_exc()}")
            return None

    def try_deep_learning_mask(self, original_image: Image.Image) -> Optional[Image.Image]:
        """
        Intelligent foreground extraction with model priority:
        1. BiRefNet (best quality, clean edges)
        2. UΒ²-Net via rembg (good fallback)
        3. Return None to trigger traditional methods

        Args:
            original_image: Input PIL Image

        Returns:
            PIL Image (L mode) mask or None if all methods failed
        """
        # Priority 1: Try BiRefNet first
        logger.info("πŸ€– Attempting BiRefNet mask generation...")
        birefnet_mask = self.try_birefnet_mask(original_image)
        if birefnet_mask is not None:
            logger.info("βœ… Using BiRefNet generated mask")
            return birefnet_mask

        # Priority 2: Fallback to rembg (UΒ²-Net)
        logger.info("πŸ”„ BiRefNet unavailable/failed, trying rembg...")
        try:
            logger.info("πŸ€– Starting rembg foreground extraction")

            # Try u2net first (better for cartoons/objects like Snoopy)
            try:
                session = new_session('u2net')
                logger.info("βœ… Using u2net model")
            except Exception as e:
                logger.warning(f"u2net failed ({e}), trying u2net_human_seg")
                try:
                    session = new_session('u2net_human_seg')
                    logger.info("βœ… Using u2net_human_seg model")
                except Exception as e2:
                    logger.error(f"All rembg models failed: {e2}")
                    return None

            # Convert image to bytes for rembg
            img_byte_arr = io.BytesIO()
            original_image.save(img_byte_arr, format='PNG')
            img_byte_arr = img_byte_arr.getvalue()
            logger.info(f"πŸ“· Image size: {len(img_byte_arr)} bytes")

            # Perform background removal
            result = remove(img_byte_arr, session=session)
            result_img = Image.open(io.BytesIO(result)).convert('RGBA')
            alpha_channel = result_img.split()[-1]
            alpha_array = np.array(alpha_channel)

            logger.info(f"πŸ“Š Raw alpha stats - Mean: {alpha_array.mean():.1f}, Min: {alpha_array.min()}, Max: {alpha_array.max()}")

            # Step 1: Light smoothing to reduce noise but preserve edges
            alpha_smoothed = cv2.GaussianBlur(alpha_array, (3, 3), 0.8)

            # Step 2: Contrast stretching to utilize full range
            alpha_stretched = cv2.normalize(alpha_smoothed, None, 0, 255, cv2.NORM_MINMAX)

            # Step 3: CRITICAL FIX - More aggressive foreground preservation
            # Instead of hard threshold, use adaptive approach

            # Find the main subject area (high confidence regions)
            high_confidence = alpha_stretched > 180
            medium_confidence = (alpha_stretched > 60) & (alpha_stretched <= 180)
            low_confidence = (alpha_stretched > 15) & (alpha_stretched <= 60)

            # Create final mask with better extremity handling
            final_alpha = np.zeros_like(alpha_stretched)

            # High confidence areas - keep at full opacity
            final_alpha[high_confidence] = 255

            # Medium confidence - boost significantly 
            final_alpha[medium_confidence] = np.clip(alpha_stretched[medium_confidence] * 1.8, 200, 255)

            # Low confidence - moderate boost (catches faint extremities)
            final_alpha[low_confidence] = np.clip(alpha_stretched[low_confidence] * 2.5, 120, 199)

            # Morphological operations to connect disconnected parts (hands, feet, tail)
            kernel_small = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
            kernel_medium = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))

            # Close small gaps (helps connect separated body parts)
            final_alpha = cv2.morphologyEx(final_alpha, cv2.MORPH_CLOSE, kernel_small, iterations=1)

            # Light dilation to ensure nothing gets cut off
            final_alpha = cv2.dilate(final_alpha, kernel_small, iterations=1)

            logger.info(f"πŸ“Š Final alpha stats - Mean: {final_alpha.mean():.1f}, Min: {final_alpha.min()}, Max: {final_alpha.max()}")

            # Quality check - but be more lenient for cartoon characters
            if final_alpha.mean() < 10:
                logger.warning("⚠️ Alpha still too weak, falling back to traditional method")
                return None

            # Enhanced post-processing for cartoon characters
            is_cartoon = self._detect_cartoon_character(original_image, final_alpha)

            if is_cartoon:
                logger.info("🎭 Detected cartoon/character image, applying specialized processing")
                final_alpha = self._enhance_cartoon_mask(original_image, final_alpha)

            # Count non-zero pixels to ensure we have substantial foreground
            foreground_pixels = np.count_nonzero(final_alpha > 50)
            total_pixels = final_alpha.size
            foreground_ratio = foreground_pixels / total_pixels
            logger.info(f"πŸ“Š Foreground coverage: {foreground_ratio:.1%} of image")

            if foreground_ratio < 0.05:  # Less than 5% is probably too little
                logger.warning("⚠️ Very low foreground coverage, falling back to traditional method")
                return None

            mask = Image.fromarray(final_alpha.astype(np.uint8), mode='L')
            logger.info("βœ… Enhanced rembg mask generation successful!")
            return mask

        except Exception as e:
            logger.error(f"❌ Deep learning mask extraction failed: {e}")
            return None

    def _detect_cartoon_character(self, original_image: Image.Image, alpha_mask: np.ndarray) -> bool:
        """
        Detect if image is cartoon/line art (heuristic approach)
        """
        try:
            img_array = np.array(original_image.convert('RGB'))
            gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)

            # Calculate edge density (cartoons usually have more clear edges)
            edges = cv2.Canny(gray, 50, 150)
            edge_density = np.count_nonzero(edges) / max(edges.size, 1)  # Avoid division by zero

            # Calculate color complexity (cartoons usually have fewer colors) - optimize memory usage
            h, w, c = img_array.shape
            if h * w > 100000:  # If image is too large, resize for processing
                small_img = cv2.resize(img_array, (200, 200))
            else:
                small_img = img_array

            unique_colors = len(np.unique(small_img.reshape(-1, 3), axis=0))
            total_pixels = small_img.shape[0] * small_img.shape[1]
            color_simplicity = unique_colors < (total_pixels * 0.1)

            # Check for obvious black outlines
            dark_pixels_ratio = np.count_nonzero(gray < 50) / max(gray.size, 1)  # Avoid division by zero
            has_black_outline = dark_pixels_ratio > 0.05

            # Comprehensive judgment: high edge density + color simplicity + black outline = likely cartoon
            is_cartoon = (edge_density > 0.05) and (color_simplicity or has_black_outline)

            logger.info(f"πŸ” Cartoon detection - Edge density: {edge_density:.3f}, Color simplicity: {color_simplicity}, Black outline: {has_black_outline} -> Cartoon: {is_cartoon}")
            return is_cartoon

        except Exception as e:
            import traceback
            logger.error(f"❌ Cartoon detection failed: {e}")
            logger.error(f"πŸ“ Traceback: {traceback.format_exc()}")
            print(f"❌ CARTOON DETECTION ERROR: {e}")
            print(f"Traceback: {traceback.format_exc()}")
            return False

    def _enhance_cartoon_mask(self, original_image: Image.Image, alpha_mask: np.ndarray) -> np.ndarray:
        """
        Enhanced mask processing for cartoon characters
        """
        try:
            img_array = np.array(original_image.convert('RGB'))
            gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
            enhanced_alpha = alpha_mask.copy()

            # Step 1: Black outline enhancement - find black outlines and enhance their alpha
            th_dark = 80  # Adjustable parameter: black threshold
            black_outline = gray < th_dark

            # Dilate black outline region by 1px
            kernel_dilate = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))  # Adjustable parameter: dilation kernel size
            black_outline_dilated = cv2.dilate(black_outline.astype(np.uint8), kernel_dilate, iterations=1)

            # Set black outline region alpha directly to 255
            enhanced_alpha[black_outline_dilated > 0] = 255
            logger.info(f"πŸ–€ Black outline enhanced: {np.count_nonzero(black_outline_dilated)} pixels")

            # Step 2: Simplified internal enhancement - process white fill areas within outlines
            # Find high confidence regions (alpha β‰₯ 160)
            high_confidence = enhanced_alpha >= 160

            # Apply close operation on high confidence regions to connect separated parts
            kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # Adjustable parameter: close kernel size
            high_confidence_closed = cv2.morphologyEx(high_confidence.astype(np.uint8), cv2.MORPH_CLOSE, kernel_close, iterations=1)

            # Simplified approach: directly enhance medium confidence regions without complex flood fill
            # Find medium/low confidence regions surrounded by high confidence regions
            medium_confidence = (enhanced_alpha >= 80) & (enhanced_alpha < 160)

            # Dilate high confidence region to include more internal areas
            kernel_dilate_internal = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
            high_confidence_expanded = cv2.dilate(high_confidence_closed, kernel_dilate_internal, iterations=1)

            # Medium confidence pixels within expanded high confidence areas are considered internal fill
            internal_fill_regions = medium_confidence & (high_confidence_expanded > 0)

            # Enhance alpha of these internal fill regions to at least 220
            min_alpha_for_fill = 220  # Adjustable parameter: minimum alpha for internal fill
            enhanced_alpha[internal_fill_regions] = np.maximum(enhanced_alpha[internal_fill_regions], min_alpha_for_fill)

            logger.info(f"🀍 Internal fill regions enhanced: {np.count_nonzero(internal_fill_regions)} pixels")
            logger.info(f"πŸ“Š Enhanced alpha stats - Mean: {enhanced_alpha.mean():.1f}, Min: {enhanced_alpha.min()}, Max: {enhanced_alpha.max()}")

            return enhanced_alpha

        except Exception as e:
            import traceback
            logger.error(f"❌ Cartoon mask enhancement failed: {e}")
            logger.error(f"πŸ“ Traceback: {traceback.format_exc()}")
            print(f"❌ CARTOON MASK ENHANCEMENT ERROR: {e}")
            print(f"Traceback: {traceback.format_exc()}")
            return alpha_mask

    def _adjust_mask_for_scene_focus(self, mask: Image.Image, original_image: Image.Image) -> Image.Image:
        """
        Adjust mask for scene focus mode to include nearby objects like chairs, furniture
        """
        try:
            logger.info("🏠 Adjusting mask for scene focus mode...")

            mask_array = np.array(mask)
            img_array = np.array(original_image.convert('RGB'))

            # Expand mask to include nearby objects
            # Use larger dilation kernel to include furniture/objects
            kernel_large = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 15))
            expanded_mask = cv2.dilate(mask_array, kernel_large, iterations=2)

            # Find contours in the expanded area to detect objects
            gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
            edges = cv2.Canny(gray, 30, 100)

            # Apply edge detection only in the expanded region
            expanded_region = (expanded_mask > 0) & (mask_array == 0)
            object_edges = np.zeros_like(edges)
            object_edges[expanded_region] = edges[expanded_region]

            # Close gaps to form complete objects
            kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
            object_mask = cv2.morphologyEx(object_edges, cv2.MORPH_CLOSE, kernel_close)
            object_mask = cv2.dilate(object_mask, kernel_close, iterations=1)

            # Combine with original mask
            final_mask = np.maximum(mask_array, object_mask)

            logger.info("βœ… Scene focus adjustment completed")
            return Image.fromarray(final_mask)

        except Exception as e:
            logger.error(f"❌ Scene focus adjustment failed: {e}")
            return mask

    def create_gradient_based_mask(self, original_image: Image.Image, mode: str = "center", focus_mode: str = "person") -> Image.Image:
        """
        Intelligent foreground extraction: prioritize deep learning models, fallback to traditional methods
        Focus mode: 'person' for tight crop around person, 'scene' for including nearby objects
        """
        width, height = original_image.size
        logger.info(f"🎯 Creating mask for {width}x{height} image, mode: {mode}, focus: {focus_mode}")

        if mode == "center":
            # Try using deep learning models for intelligent foreground extraction
            logger.info("πŸ€– Attempting deep learning mask generation...")
            dl_mask = self.try_deep_learning_mask(original_image)
            if dl_mask is not None:
                logger.info("βœ… Using deep learning generated mask")
                # Apply focus mode adjustments to deep learning mask
                if focus_mode == "scene":
                    dl_mask = self._adjust_mask_for_scene_focus(dl_mask, original_image)
                return dl_mask

            # Fallback to traditional method
            logger.info("πŸ”„ Deep learning failed, using traditional gradient-based method")
            img_array = np.array(original_image.convert('RGB'))
            gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)

            # First-order derivatives: use Sobel operator for edge detection
            grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
            grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
            gradient_magnitude = np.sqrt(grad_x**2 + grad_y**2)

            # Second-order derivatives: use Laplacian operator for texture change detection
            laplacian = cv2.Laplacian(gray, cv2.CV_64F, ksize=3)
            laplacian_abs = np.abs(laplacian)

            # Combine first and second order derivatives
            combined_edges = gradient_magnitude * 0.7 + laplacian_abs * 0.3
            combined_edges = (combined_edges / np.max(combined_edges)) * 255

            # Threshold processing to find strong edges
            _, edge_binary = cv2.threshold(combined_edges.astype(np.uint8), 20, 255, cv2.THRESH_BINARY)

            # Morphological operations to connect edges
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
            edge_binary = cv2.morphologyEx(edge_binary, cv2.MORPH_CLOSE, kernel)

            # Find contours and create mask
            contours, _ = cv2.findContours(edge_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

            if contours:
                # Find largest contour (main subject)
                largest_contour = max(contours, key=cv2.contourArea)
                contour_mask = np.zeros((height, width), dtype=np.uint8)
                cv2.fillPoly(contour_mask, [largest_contour], 255)

                # Create foreground enhancement mask: specially protect dark regions
                dark_mask = (gray < 90).astype(np.uint8) * 255
                morph_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
                dark_mask = cv2.morphologyEx(dark_mask, cv2.MORPH_CLOSE, morph_kernel, iterations=1)
                dark_mask = cv2.dilate(dark_mask, morph_kernel, iterations=2)
                contour_mask = cv2.bitwise_or(contour_mask, dark_mask)

                # Get core foreground: clean holes and fill gaps
                close_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
                core_mask = cv2.morphologyEx(contour_mask, cv2.MORPH_CLOSE, close_kernel, iterations=1)

                open_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
                core_mask = cv2.morphologyEx(core_mask, cv2.MORPH_OPEN, open_kernel, iterations=1)

                # Convert to binary core (0/255)
                _, core_binary = cv2.threshold(core_mask, 127, 255, cv2.THRESH_BINARY)

                # Keep only slight dilation to avoid foreground being eaten
                dilate_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
                core_binary = cv2.dilate(core_binary, dilate_kernel, iterations=1)

                # Distance transform feathering: shrink feathering range for sharp edges
                FEATHER_PX = 4

                # Calculate distance transform
                core_float = core_binary.astype(np.float32) / 255.0
                distances = cv2.distanceTransform((1 - core_float).astype(np.uint8), cv2.DIST_L2, 5)

                # Create feathering mask: 0β†’FEATHER_PX linear mapping to 1β†’0
                feather_mask = np.ones_like(distances)
                edge_region = (distances > 0) & (distances <= FEATHER_PX)
                feather_mask[edge_region] = 1.0 - (distances[edge_region] / FEATHER_PX)
                feather_mask[distances > FEATHER_PX] = 0.0

                # Apply double-smoothstep curve: make transition steeper, reduce semi-transparent halos
                def double_smoothstep(t):
                    t = np.clip(t, 0, 1)
                    s1 = t * t * (3 - 2 * t)
                    return s1 * s1 * (3 - 2 * s1)  # Equivalent to t^3 (10 - 15t + 6t^2)

                # Combine core with feathering: core area keeps 255, edges use double_smoothstep feathering
                final_alpha = np.zeros_like(distances)
                final_alpha[core_binary > 127] = 1.0  # Core area
                final_alpha[edge_region] = double_smoothstep(feather_mask[edge_region])  # Feathering area

                # Convert to 0-255 range
                final_mask = (final_alpha * 255).astype(np.uint8)

                # Apply guided filter for edge-preserving smoothing
                final_mask = self.apply_guided_filter(final_mask, original_image, radius=8, eps=0.01)

                mask = Image.fromarray(final_mask)
            else:
                # Backup plan: use large ellipse
                mask = Image.new('L', (width, height), 0)
                draw = ImageDraw.Draw(mask)
                center_x, center_y = width // 2, height // 2
                width_radius = int(width * 0.45)
                height_radius = int(width * 0.48)
                draw.ellipse([
                    center_x - width_radius, center_y - height_radius,
                    center_x + width_radius, center_y + height_radius
                ], fill=255)
                # Apply guided filter instead of Gaussian blur
                mask_array = np.array(mask)
                mask_array = self.apply_guided_filter(mask_array, original_image, radius=10, eps=0.02)
                mask = Image.fromarray(mask_array)

        elif mode == "left_half":
            # Keep original logic unchanged - ensure Snoopy and other functions work normally
            mask = Image.new('L', (width, height), 0)
            mask_array = np.array(mask)
            mask_array[:, :width//2] = 255

            transition_zone = width // 10
            for i in range(transition_zone):
                x_pos = width//2 + i
                if x_pos < width:
                    alpha = 255 * (1 - i / transition_zone)
                    mask_array[:, x_pos] = int(alpha)

            mask = Image.fromarray(mask_array)

        elif mode == "right_half":
            # Keep original logic unchanged - ensure Snoopy and other functions work normally
            mask = Image.new('L', (width, height), 0)
            mask_array = np.array(mask)
            mask_array[:, width//2:] = 255

            transition_zone = width // 10
            for i in range(transition_zone):
                x_pos = width//2 - i - 1
                if x_pos >= 0:
                    alpha = 255 * (1 - i / transition_zone)
                    mask_array[:, x_pos] = int(alpha)

            mask = Image.fromarray(mask_array)

        elif mode == "full":
            mask = Image.new('L', (width, height), 0)
            draw = ImageDraw.Draw(mask)
            center_x, center_y = width // 2, height // 2
            radius = min(width, height) // 8

            draw.ellipse([
                center_x - radius, center_y - radius,
                center_x + radius, center_y + radius
            ], fill=255)

            mask = mask.filter(ImageFilter.GaussianBlur(radius=5))

        return mask