Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,209 Bytes
ca80d1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import logging
import numpy as np
import cv2
from PIL import Image
from typing import Dict, Any, Tuple, Optional
from dataclasses import dataclass
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
@dataclass
class QualityResult:
"""Result of a quality check."""
score: float # 0-100
passed: bool
issue: str
details: Dict[str, Any]
class QualityChecker:
"""
Automated quality validation system for generated images.
Provides checks for mask coverage, edge continuity, and color harmony.
"""
# Quality thresholds
THRESHOLD_PASS = 70
THRESHOLD_WARNING = 50
def __init__(self, strictness: str = "standard"):
"""
Initialize QualityChecker.
Args:
strictness: Quality check strictness level
"lenient" - Only check fatal issues
"standard" - All checks with moderate thresholds
"strict" - High standards required
"""
self.strictness = strictness
self._set_thresholds()
def _set_thresholds(self):
"""Set quality thresholds based on strictness level."""
if self.strictness == "lenient":
self.min_coverage = 0.03 # 3%
self.min_edge_score = 40
self.min_harmony_score = 40
elif self.strictness == "strict":
self.min_coverage = 0.10 # 10%
self.min_edge_score = 75
self.min_harmony_score = 75
else: # standard
self.min_coverage = 0.05 # 5%
self.min_edge_score = 60
self.min_harmony_score = 60
def check_mask_coverage(self, mask: Image.Image) -> QualityResult:
"""
Verify mask coverage is adequate.
Args:
mask: Grayscale mask image (L mode)
Returns:
QualityResult with coverage analysis
"""
try:
mask_array = np.array(mask.convert('L'))
height, width = mask_array.shape
total_pixels = height * width
# Count foreground pixels
fg_pixels = np.count_nonzero(mask_array > 127)
coverage_ratio = fg_pixels / total_pixels
# Check for isolated small regions (noise)
_, binary = cv2.threshold(mask_array, 127, 255, cv2.THRESH_BINARY)
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(binary, connectivity=8)
# Count significant regions (> 1% of image)
min_region_size = total_pixels * 0.01
significant_regions = sum(1 for i in range(1, num_labels)
if stats[i, cv2.CC_STAT_AREA] > min_region_size)
# Calculate fragmentation (many small regions = bad)
fragmentation_penalty = max(0, (num_labels - 1 - significant_regions) * 2)
# Score calculation
coverage_score = min(100, coverage_ratio * 200) # 50% coverage = 100 score
final_score = max(0, coverage_score - fragmentation_penalty)
# Determine pass/fail
passed = coverage_ratio >= self.min_coverage and significant_regions >= 1
issue = ""
if coverage_ratio < self.min_coverage:
issue = f"Low foreground coverage ({coverage_ratio:.1%})"
elif significant_regions == 0:
issue = "No significant foreground regions detected"
elif fragmentation_penalty > 20:
issue = f"Fragmented mask with {num_labels - 1} isolated regions"
return QualityResult(
score=final_score,
passed=passed,
issue=issue,
details={
"coverage_ratio": coverage_ratio,
"foreground_pixels": fg_pixels,
"total_regions": num_labels - 1,
"significant_regions": significant_regions
}
)
except Exception as e:
logger.error(f"❌ Mask coverage check failed: {e}")
return QualityResult(score=0, passed=False, issue=str(e), details={})
def check_edge_continuity(self, mask: Image.Image) -> QualityResult:
"""
Check if mask edges are continuous and smooth.
Args:
mask: Grayscale mask image
Returns:
QualityResult with edge analysis
"""
try:
mask_array = np.array(mask.convert('L'))
# Find edges using morphological gradient
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
gradient = cv2.morphologyEx(mask_array, cv2.MORPH_GRADIENT, kernel)
# Get edge pixels
edge_pixels = gradient > 20
edge_count = np.count_nonzero(edge_pixels)
if edge_count == 0:
return QualityResult(
score=50,
passed=False,
issue="No edges detected in mask",
details={"edge_count": 0}
)
# Check edge smoothness using Laplacian
laplacian = cv2.Laplacian(mask_array, cv2.CV_64F)
edge_laplacian = np.abs(laplacian[edge_pixels])
# High Laplacian values indicate jagged edges
smoothness = 100 - min(100, np.std(edge_laplacian) * 0.5)
# Check for gaps in edges
# Dilate and erode to find disconnections
dilated = cv2.dilate(gradient, kernel, iterations=1)
eroded = cv2.erode(dilated, kernel, iterations=1)
gaps = cv2.subtract(dilated, eroded)
gap_ratio = np.count_nonzero(gaps) / max(edge_count, 1)
# Calculate final score
gap_penalty = min(40, gap_ratio * 100)
final_score = max(0, smoothness - gap_penalty)
passed = final_score >= self.min_edge_score
issue = ""
if final_score < self.min_edge_score:
if smoothness < 60:
issue = "Jagged or rough edges detected"
elif gap_ratio > 0.3:
issue = "Discontinuous edges with gaps"
else:
issue = "Poor edge quality"
return QualityResult(
score=final_score,
passed=passed,
issue=issue,
details={
"edge_count": edge_count,
"smoothness": smoothness,
"gap_ratio": gap_ratio
}
)
except Exception as e:
logger.error(f"❌ Edge continuity check failed: {e}")
return QualityResult(score=0, passed=False, issue=str(e), details={})
def check_color_harmony(
self,
foreground: Image.Image,
background: Image.Image,
mask: Image.Image
) -> QualityResult:
"""
Evaluate color harmony between foreground and background.
Args:
foreground: Original foreground image
background: Generated background image
mask: Combination mask
Returns:
QualityResult with harmony analysis
"""
try:
fg_array = np.array(foreground.convert('RGB'))
bg_array = np.array(background.convert('RGB'))
mask_array = np.array(mask.convert('L'))
# Get foreground and background regions
fg_region = mask_array > 127
bg_region = mask_array <= 127
if not np.any(fg_region) or not np.any(bg_region):
return QualityResult(
score=50,
passed=True,
issue="Cannot analyze harmony - insufficient regions",
details={}
)
# Convert to LAB for perceptual analysis
fg_lab = cv2.cvtColor(fg_array, cv2.COLOR_RGB2LAB).astype(np.float32)
bg_lab = cv2.cvtColor(bg_array, cv2.COLOR_RGB2LAB).astype(np.float32)
# Calculate average colors
fg_avg_l = np.mean(fg_lab[fg_region, 0])
fg_avg_a = np.mean(fg_lab[fg_region, 1])
fg_avg_b = np.mean(fg_lab[fg_region, 2])
bg_avg_l = np.mean(bg_lab[bg_region, 0])
bg_avg_a = np.mean(bg_lab[bg_region, 1])
bg_avg_b = np.mean(bg_lab[bg_region, 2])
# Calculate color differences
delta_l = abs(fg_avg_l - bg_avg_l)
delta_a = abs(fg_avg_a - bg_avg_a)
delta_b = abs(fg_avg_b - bg_avg_b)
# Overall color difference (Delta E approximation)
delta_e = np.sqrt(delta_l**2 + delta_a**2 + delta_b**2)
# Score calculation
# Moderate difference is good (20-60 Delta E)
# Too similar or too different is problematic
if delta_e < 10:
harmony_score = 60 # Too similar, foreground may get lost
issue = "Foreground and background colors too similar"
elif delta_e > 80:
harmony_score = 50 # Too different, may look unnatural
issue = "High color contrast may look unnatural"
elif 20 <= delta_e <= 60:
harmony_score = 100 # Ideal range
issue = ""
else:
harmony_score = 80
issue = ""
# Check for extreme contrast (very dark fg on very bright bg or vice versa)
brightness_contrast = abs(fg_avg_l - bg_avg_l)
if brightness_contrast > 100:
harmony_score = max(40, harmony_score - 30)
issue = "Extreme brightness contrast between foreground and background"
passed = harmony_score >= self.min_harmony_score
return QualityResult(
score=harmony_score,
passed=passed,
issue=issue,
details={
"delta_e": delta_e,
"delta_l": delta_l,
"delta_a": delta_a,
"delta_b": delta_b,
"fg_luminance": fg_avg_l,
"bg_luminance": bg_avg_l
}
)
except Exception as e:
logger.error(f"❌ Color harmony check failed: {e}")
return QualityResult(score=0, passed=False, issue=str(e), details={})
def run_all_checks(
self,
foreground: Image.Image,
background: Image.Image,
mask: Image.Image,
combined: Optional[Image.Image] = None
) -> Dict[str, Any]:
"""
Run all quality checks and return comprehensive results.
Args:
foreground: Original foreground image
background: Generated background
mask: Combination mask
combined: Final combined image (optional)
Returns:
Dictionary with all check results and overall score
"""
logger.info("🔍 Running quality checks...")
results = {
"checks": {},
"overall_score": 0,
"passed": True,
"warnings": [],
"errors": []
}
# Run individual checks
coverage_result = self.check_mask_coverage(mask)
results["checks"]["mask_coverage"] = {
"score": coverage_result.score,
"passed": coverage_result.passed,
"issue": coverage_result.issue,
"details": coverage_result.details
}
edge_result = self.check_edge_continuity(mask)
results["checks"]["edge_continuity"] = {
"score": edge_result.score,
"passed": edge_result.passed,
"issue": edge_result.issue,
"details": edge_result.details
}
harmony_result = self.check_color_harmony(foreground, background, mask)
results["checks"]["color_harmony"] = {
"score": harmony_result.score,
"passed": harmony_result.passed,
"issue": harmony_result.issue,
"details": harmony_result.details
}
# Calculate overall score (weighted average)
weights = {
"mask_coverage": 0.4,
"edge_continuity": 0.3,
"color_harmony": 0.3
}
total_score = (
coverage_result.score * weights["mask_coverage"] +
edge_result.score * weights["edge_continuity"] +
harmony_result.score * weights["color_harmony"]
)
results["overall_score"] = round(total_score, 1)
# Determine overall pass/fail
results["passed"] = all([
coverage_result.passed,
edge_result.passed,
harmony_result.passed
])
# Collect warnings and errors
for check_name, check_data in results["checks"].items():
if check_data["issue"]:
if check_data["passed"]:
results["warnings"].append(f"{check_name}: {check_data['issue']}")
else:
results["errors"].append(f"{check_name}: {check_data['issue']}")
logger.info(f"📊 Quality check complete - Score: {results['overall_score']}, Passed: {results['passed']}")
return results
def get_quality_summary(self, results: Dict[str, Any]) -> str:
"""
Generate human-readable quality summary.
Args:
results: Results from run_all_checks
Returns:
Summary string
"""
score = results["overall_score"]
passed = results["passed"]
if score >= 90:
grade = "Excellent"
elif score >= 75:
grade = "Good"
elif score >= 60:
grade = "Acceptable"
elif score >= 40:
grade = "Needs Improvement"
else:
grade = "Poor"
summary = f"Quality: {grade} ({score:.0f}/100)"
if results["errors"]:
summary += f"\nIssues: {'; '.join(results['errors'])}"
elif results["warnings"]:
summary += f"\nNotes: {'; '.join(results['warnings'])}"
return summary
|