Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,290 Bytes
ca80d1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import logging
import time
from pathlib import Path
from typing import Optional, Tuple
from PIL import Image
import numpy as np
import cv2
import gradio as gr
import spaces
from scene_weaver_core import SceneWeaverCore
from css_styles import CSSStyles
from scene_templates import SceneTemplateManager
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(name)s] %(levelname)s: %(message)s',
datefmt='%H:%M:%S'
)
class UIManager:
"""Gradio UI with enhanced memory management and professional design"""
def __init__(self):
self.sceneweaver = SceneWeaverCore()
self.template_manager = SceneTemplateManager()
self.generation_history = []
self._preview_sensitivity = 0.5
def apply_template(self, display_name: str, current_negative: str) -> Tuple[str, str, float]:
"""
Apply a scene template to the prompt fields.
Args:
display_name: The display name from dropdown (e.g., "🏢 Modern Office")
current_negative: Current negative prompt value
Returns:
Tuple of (prompt, negative_prompt, guidance_scale)
"""
if not display_name:
return "", current_negative, 7.5
# Convert display name to template key
template_key = self.template_manager.get_template_key_from_display(display_name)
if not template_key:
return "", current_negative, 7.5
template = self.template_manager.get_template(template_key)
if template:
prompt = template.prompt
negative = self.template_manager.get_negative_prompt_for_template(
template_key, current_negative
)
guidance = template.guidance_scale
return prompt, negative, guidance
return "", current_negative, 7.5
def quick_preview(
self,
uploaded_image: Optional[Image.Image],
sensitivity: float = 0.5
) -> Optional[Image.Image]:
"""
Generate quick foreground preview using lightweight traditional methods.
Args:
uploaded_image: Uploaded PIL Image
sensitivity: Detection sensitivity (0.0 - 1.0)
Returns:
Preview image with colored overlay or None
"""
if uploaded_image is None:
return None
try:
logger.info(f"Generating quick preview (sensitivity={sensitivity:.2f})")
img_array = np.array(uploaded_image.convert('RGB'))
height, width = img_array.shape[:2]
max_preview_size = 512
if max(width, height) > max_preview_size:
scale = max_preview_size / max(width, height)
new_w = int(width * scale)
new_h = int(height * scale)
img_array = cv2.resize(img_array, (new_w, new_h), interpolation=cv2.INTER_AREA)
height, width = new_h, new_w
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
low_threshold = int(30 + (1 - sensitivity) * 50)
high_threshold = int(100 + (1 - sensitivity) * 100)
edges = cv2.Canny(blurred, low_threshold, high_threshold)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
dilated = cv2.dilate(edges, kernel, iterations=2)
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
mask = np.zeros((height, width), dtype=np.uint8)
if contours:
sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)
min_area = (width * height) * 0.01 * (1 - sensitivity)
for contour in sorted_contours:
if cv2.contourArea(contour) > min_area:
cv2.fillPoly(mask, [contour], 255)
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel_close)
overlay = img_array.copy().astype(np.float32)
fg_mask = mask > 127
overlay[fg_mask] = overlay[fg_mask] * 0.5 + np.array([0, 255, 0]) * 0.5
bg_mask = mask <= 127
overlay[bg_mask] = overlay[bg_mask] * 0.5 + np.array([255, 0, 0]) * 0.5
overlay = np.clip(overlay, 0, 255).astype(np.uint8)
original_size = uploaded_image.size
preview_image = Image.fromarray(overlay)
if preview_image.size != original_size:
preview_image = preview_image.resize(original_size, Image.LANCZOS)
logger.info("Quick preview generated successfully")
return preview_image
except Exception as e:
logger.error(f"Quick preview failed: {e}")
return None
def _save_result(self, combined_image: Image.Image, prompt: str):
"""Save result with memory-conscious history management"""
if not combined_image:
return
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
combined_image.save(output_dir / "latest_combined.png")
self.generation_history.append({
"prompt": prompt,
"timestamp": time.time()
})
max_history = self.sceneweaver.max_history
if len(self.generation_history) > max_history:
self.generation_history = self.generation_history[-max_history:]
@spaces.GPU(duration=120)
def generate_handler(
self,
uploaded_image: Optional[Image.Image],
prompt: str,
combination_mode: str,
focus_mode: str,
negative_prompt: str,
steps: int,
guidance: float,
progress=gr.Progress()
):
"""Enhanced generation handler with memory management and ZeroGPU support"""
if uploaded_image is None:
return None, None, None, "Please upload an image to get started!", gr.update(visible=False)
if not prompt.strip():
return None, None, None, "Please describe the background scene you'd like!", gr.update(visible=False)
try:
if not self.sceneweaver.is_initialized:
progress(0.05, desc="Loading AI models (first time may take 2-3 minutes)...")
def init_progress(msg, pct):
if pct < 30:
desc = "Loading image analysis models..."
elif pct < 60:
desc = "Loading Stable Diffusion XL..."
elif pct < 90:
desc = "Applying memory optimizations..."
else:
desc = "Almost ready..."
progress(0.05 + (pct/100) * 0.2, desc=desc)
self.sceneweaver.load_models(progress_callback=init_progress)
def gen_progress(msg, pct):
if pct < 20:
desc = "Analyzing your image..."
elif pct < 50:
desc = "Generating background scene..."
elif pct < 80:
desc = "Blending foreground and background..."
elif pct < 95:
desc = "Applying final touches..."
else:
desc = "Complete!"
progress(0.25 + (pct/100) * 0.75, desc=desc)
result = self.sceneweaver.generate_and_combine(
original_image=uploaded_image,
prompt=prompt,
combination_mode=combination_mode,
focus_mode=focus_mode,
negative_prompt=negative_prompt,
num_inference_steps=int(steps),
guidance_scale=float(guidance),
progress_callback=gen_progress
)
if result["success"]:
combined = result["combined_image"]
generated = result["generated_scene"]
original = result["original_image"]
self._save_result(combined, prompt)
status_msg = "Image created successfully!"
return combined, generated, original, status_msg, gr.update(visible=True)
else:
error_msg = result.get("error", "Something went wrong")
return None, None, None, f"Error: {error_msg}", gr.update(visible=False)
except Exception as e:
import traceback
error_traceback = traceback.format_exc()
logger.error(f"Generation handler error: {str(e)}")
logger.error(f"Traceback:\n{error_traceback}")
return None, None, None, f"Error: {str(e)}", gr.update(visible=False)
def create_interface(self):
"""Create professional user interface"""
css = CSSStyles.get_main_css()
with gr.Blocks(
css=css,
title="SceneWeaver - AI Background Generator",
theme=gr.themes.Soft()
) as interface:
# Header
gr.HTML("""
<div class="main-header">
<h1 class="main-title">
<span class="title-emoji">🎨</span>
SceneWeaver
</h1>
<p class="main-subtitle">AI-powered background generation with professional edge processing</p>
</div>
""")
with gr.Row():
# Left Column - Input controls
with gr.Column(scale=1, min_width=350, elem_classes=["feature-card"]):
gr.HTML("""
<div class="card-content">
<h3 class="card-title">
<span class="section-emoji">📸</span>
Upload & Generate
</h3>
</div>
""")
uploaded_image = gr.Image(
label="Upload Your Image",
type="pil",
height=280,
elem_classes=["input-field"]
)
# Scene Template Selector
with gr.Accordion("Scene Templates", open=False):
template_dropdown = gr.Dropdown(
label="Select a Scene",
choices=[""] + self.template_manager.get_template_choices_sorted(),
value="",
info="24 curated scenes sorted A-Z",
elem_classes=["template-dropdown"]
)
prompt_input = gr.Textbox(
label="Background Scene Description",
placeholder="Select a template above or describe your own scene...",
lines=3,
elem_classes=["input-field"]
)
combination_mode = gr.Dropdown(
label="Composition Mode",
choices=["center", "left_half", "right_half", "full"],
value="center",
info="center=Smart Center | left_half=Left Half | right_half=Right Half | full=Full Image",
elem_classes=["input-field"]
)
focus_mode = gr.Dropdown(
label="Focus Mode",
choices=["person", "scene"],
value="person",
info="person=Tight Crop | scene=Include Surrounding Objects",
elem_classes=["input-field"]
)
with gr.Accordion("Advanced Options", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="blurry, low quality, distorted, people, characters",
lines=2,
elem_classes=["input-field"]
)
steps_slider = gr.Slider(
label="Quality Steps",
minimum=15,
maximum=50,
value=25,
step=5,
elem_classes=["input-field"]
)
guidance_slider = gr.Slider(
label="Guidance Scale",
minimum=5.0,
maximum=15.0,
value=7.5,
step=0.5,
elem_classes=["input-field"]
)
generate_btn = gr.Button(
"Generate Background",
variant="primary",
size="lg",
elem_classes=["primary-button"]
)
# Right Column - Results display
with gr.Column(scale=2, elem_classes=["feature-card"], elem_id="results-gallery-centered"):
gr.HTML("""
<div class="card-content">
<h3 class="card-title">
<span class="section-emoji">🎭</span>
Results Gallery
</h3>
</div>
""")
# Loading notice
gr.HTML("""
<div class="loading-notice">
<span class="loading-notice-icon">⏱️</span>
<span class="loading-notice-text">
<strong>First-time users:</strong> Initial model loading takes 1-2 minutes.
Subsequent generations are much faster (~30s).
</span>
</div>
""")
# Quick start guide
gr.HTML("""
<details class="user-guidance-panel">
<summary class="guidance-summary">
<span class="emoji-enhanced">💡</span>
Quick Start Guide
</summary>
<div class="guidance-content">
<p><strong>Step 1:</strong> Upload any image with a clear subject</p>
<p><strong>Step 2:</strong> Describe or Choose your desired background scene</p>
<p><strong>Step 3:</strong> Choose composition mode (center works best)</p>
<p><strong>Step 4:</strong> Click Generate and wait for the magic!</p>
<p><strong>Tip:</strong> For dark clothing, ensure good lighting in original photo.</p>
</div>
</details>
""")
with gr.Tabs():
with gr.TabItem("Final Result"):
combined_output = gr.Image(
label="Your Generated Image",
elem_classes=["result-gallery"],
show_label=False
)
with gr.TabItem("Background"):
generated_output = gr.Image(
label="Generated Background",
elem_classes=["result-gallery"],
show_label=False
)
with gr.TabItem("Original"):
original_output = gr.Image(
label="Processed Original",
elem_classes=["result-gallery"],
show_label=False
)
status_output = gr.Textbox(
label="Status",
value="Ready to create! Upload an image and describe your vision.",
interactive=False,
elem_classes=["status-panel", "status-ready"]
)
with gr.Row():
download_btn = gr.DownloadButton(
"Download Result",
value=None,
visible=False,
elem_classes=["secondary-button"]
)
clear_btn = gr.Button(
"Clear All",
elem_classes=["secondary-button"]
)
memory_btn = gr.Button(
"Clean Memory",
elem_classes=["secondary-button"]
)
# Footer with tech credits
gr.HTML("""
<div class="app-footer">
<div class="footer-powered">
<p class="footer-powered-title">Powered By</p>
<div class="footer-tech-grid">
<span class="footer-tech-item">Stable Diffusion XL</span>
<span class="footer-tech-item">OpenCLIP</span>
<span class="footer-tech-item">BiRefNet</span>
<span class="footer-tech-item">rembg</span>
<span class="footer-tech-item">PyTorch</span>
<span class="footer-tech-item">Gradio</span>
</div>
</div>
<div class="footer-divider"></div>
<p class="footer-copyright">
SceneWeaver © 2025 |
Built with <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0" target="_blank">SDXL</a>
and <a href="https://github.com/mlfoundations/open_clip" target="_blank">OpenCLIP</a>
</p>
</div>
""")
# Event handlers
# Template selection handler
template_dropdown.change(
fn=self.apply_template,
inputs=[template_dropdown, negative_prompt],
outputs=[prompt_input, negative_prompt, guidance_slider]
)
generate_btn.click(
fn=self.generate_handler,
inputs=[
uploaded_image,
prompt_input,
combination_mode,
focus_mode,
negative_prompt,
steps_slider,
guidance_slider
],
outputs=[
combined_output,
generated_output,
original_output,
status_output,
download_btn
]
)
clear_btn.click(
fn=lambda: (None, None, None, "Ready to create!", gr.update(visible=False)),
outputs=[combined_output, generated_output, original_output, status_output, download_btn]
)
memory_btn.click(
fn=lambda: self.sceneweaver._ultra_memory_cleanup() or "Memory cleaned!",
outputs=[status_output]
)
combined_output.change(
fn=lambda img: gr.update(value="outputs/latest_combined.png", visible=True) if (img is not None) else gr.update(visible=False),
inputs=[combined_output],
outputs=[download_btn]
)
return interface
def launch(self, share: bool = True, debug: bool = False):
"""Launch the UI interface"""
interface = self.create_interface()
return interface.launch(
share=share,
debug=debug,
show_error=True,
height=800,
favicon_path=None,
ssl_verify=False,
quiet=False
)
|