File size: 44,335 Bytes
ca80d1d
 
 
 
 
 
 
7d583e3
ca80d1d
 
 
 
 
 
7d583e3
ca80d1d
 
 
7d583e3
 
 
ca80d1d
 
 
 
 
 
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
ca80d1d
 
7d583e3
 
 
 
 
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d583e3
 
 
 
 
 
 
 
 
 
 
ca80d1d
 
aa7bf19
 
 
 
 
 
 
 
 
ca80d1d
 
 
 
 
 
 
 
 
 
 
4cac9e5
ca80d1d
 
 
 
 
 
4cac9e5
 
 
 
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d583e3
ca80d1d
 
 
 
 
 
 
 
7d583e3
ca80d1d
 
 
 
7d583e3
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
7d583e3
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d583e3
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
 
7d583e3
ca80d1d
 
 
 
 
 
 
 
7d583e3
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef55982
 
 
 
7d583e3
 
 
 
 
 
 
2abbbfe
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa7bf19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
import torch
import numpy as np
import cv2
from PIL import Image
import logging
import gc
import time
from typing import Optional, Dict, Any, Tuple, List, Callable
from pathlib import Path
import warnings
warnings.filterwarnings("ignore")

from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler
import open_clip
import traceback
from mask_generator import MaskGenerator
from image_blender import ImageBlender
from quality_checker import QualityChecker
from model_manager import get_model_manager, ModelPriority
from inpainting_module import InpaintingModule
from inpainting_templates import InpaintingTemplateManager

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

class SceneWeaverCore:
    """
    SceneWeaver Core Engine - Facade for all AI generation subsystems.

    Integrates SDXL pipeline, OpenCLIP analysis, mask generation, image blending,
    and inpainting functionality into a unified interface.

    Attributes:
        device: Computation device (cuda/mps/cpu)
        is_initialized: Whether models are loaded
        inpainting_module: Optional InpaintingModule instance

    Example:
        >>> core = SceneWeaverCore()
        >>> core.load_models()
        >>> result = core.generate_and_combine(image, prompt="sunset beach")
    """

    # Model registry names
    MODEL_SDXL_PIPELINE = "sdxl_background_pipeline"
    MODEL_OPENCLIP = "openclip_analyzer"
    MODEL_INPAINTING_PIPELINE = "inpainting_pipeline"

    # Style presets for diversity generation mode
    STYLE_PRESETS = {
        "professional": {
            "name": "Professional Business",
            "modifier": "professional office environment, clean background, corporate setting, bright even lighting",
            "negative_extra": "casual, messy, cluttered",
            "guidance_scale": 8.0
        },
        "casual": {
            "name": "Casual Lifestyle",
            "modifier": "casual outdoor setting, natural environment, relaxed atmosphere, warm natural lighting",
            "negative_extra": "formal, studio",
            "guidance_scale": 7.5
        },
        "artistic": {
            "name": "Artistic Creative",
            "modifier": "artistic background, creative composition, vibrant colors, interesting lighting",
            "negative_extra": "boring, plain",
            "guidance_scale": 6.5
        },
        "nature": {
            "name": "Natural Scenery",
            "modifier": "beautiful natural scenery, outdoor landscape, scenic view, natural lighting",
            "negative_extra": "urban, indoor",
            "guidance_scale": 7.5
        }
    }

    def __init__(self, device: str = "auto"):
        self.device = self._setup_device(device)

        # Model configurations - KEEP SAME FOR PERFECT GENERATION
        self.base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
        self.clip_model_name = "ViT-B-32"
        self.clip_pretrained = "openai"

        # Pipeline objects
        self.pipeline = None
        self.clip_model = None
        self.clip_preprocess = None
        self.clip_tokenizer = None
        self.is_initialized = False

        # Generation settings - KEEP SAME
        self.max_image_size = 1024
        self.default_steps = 25
        self.use_fp16 = True

        # Enhanced memory management
        self.generation_count = 0
        self.cleanup_frequency = 1  # More frequent cleanup
        self.max_history = 3  # Limit generation history

        # Initialize helper classes
        self.mask_generator = MaskGenerator(self.max_image_size)
        self.image_blender = ImageBlender()
        self.quality_checker = QualityChecker()

        # Model manager reference
        self._model_manager = get_model_manager()

        # Inpainting module (lazy loaded)
        self._inpainting_module = None
        self._inpainting_initialized = False

        # Current mode tracking
        self._current_mode = "background"  # "background" or "inpainting"

        logger.info(f"SceneWeaverCore initialized on {self.device}")

    def _setup_device(self, device: str) -> str:
        """Setup computation device (ZeroGPU compatible)"""
        import os

        # On Hugging Face Spaces with ZeroGPU, use CPU for initialization
        # GPU will be allocated by @spaces.GPU decorator at runtime
        if os.getenv('SPACE_ID') is not None:
            logger.info("Running on Hugging Face Spaces - using CPU for initialization")
            return "cpu"

        if device == "auto":
            if torch.cuda.is_available():
                return "cuda"
            elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
                return "mps"
            else:
                return "cpu"
        return device

    def _ultra_memory_cleanup(self):
        """Ultra aggressive memory cleanup for Colab stability"""
        import os
        logger.debug("🧹 Ultra memory cleanup...")

        # Multiple rounds of garbage collection
        for i in range(5):
            gc.collect()

        # On Hugging Face Spaces, skip CUDA operations in main process
        is_spaces = os.getenv('SPACE_ID') is not None

        if not is_spaces and torch.cuda.is_available():
            # Clear all cached memory
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

            # Force synchronization
            torch.cuda.synchronize()

            # Clear any remaining memory fragments
            try:
                torch.cuda.memory.empty_cache()
            except:
                pass

        logger.debug("✅ Ultra cleanup completed")

    def load_models(self, progress_callback: Optional[callable] = None):
        """Load AI models - KEEP SAME FOR PERFECT GENERATION"""
        if self.is_initialized:
            logger.info("Models already loaded")
            return

        logger.info("📥 Loading AI models...")

        try:
            self._ultra_memory_cleanup()

            if progress_callback:
                progress_callback("Loading OpenCLIP for image understanding...", 20)

            # Load OpenCLIP - KEEP SAME
            self.clip_model, _, self.clip_preprocess = open_clip.create_model_and_transforms(
                self.clip_model_name,
                pretrained=self.clip_pretrained,
                device=self.device
            )
            self.clip_tokenizer = open_clip.get_tokenizer(self.clip_model_name)
            self.clip_model.eval()

            logger.info("✅ OpenCLIP loaded")

            if progress_callback:
                progress_callback("Loading SDXL text-to-image pipeline...", 60)

            # Load standard SDXL text-to-image pipeline - KEEP SAME
            self.pipeline = StableDiffusionXLPipeline.from_pretrained(
                self.base_model_id,
                torch_dtype=torch.float16 if self.use_fp16 else torch.float32,
                use_safetensors=True,
                variant="fp16" if self.use_fp16 else None
            )

            # Use DPM solver for faster generation - KEEP SAME
            self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
                self.pipeline.scheduler.config
            )

            # Move to device
            self.pipeline = self.pipeline.to(self.device)

            if progress_callback:
                progress_callback("Applying optimizations...", 90)

            # Memory optimizations - ENHANCED
            try:
                self.pipeline.enable_xformers_memory_efficient_attention()
                logger.info("✅ xformers enabled")
            except Exception:
                try:
                    self.pipeline.enable_attention_slicing()
                    logger.info("✅ Attention slicing enabled")
                except Exception:
                    logger.warning("⚠️ No memory optimizations available")

            # Additional memory optimizations
            if hasattr(self.pipeline, 'enable_vae_tiling'):
                self.pipeline.enable_vae_tiling()

            if hasattr(self.pipeline, 'enable_vae_slicing'):
                self.pipeline.enable_vae_slicing()

            # Set to eval mode
            self.pipeline.unet.eval()
            if hasattr(self.pipeline, 'vae'):
                self.pipeline.vae.eval()

            # Enable sequential CPU offload if very low on memory
            try:
                if torch.cuda.is_available():
                    free_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated()
                    if free_memory < 4 * 1024**3:  # Less than 4GB free
                        self.pipeline.enable_sequential_cpu_offload()
                        logger.info("✅ Sequential CPU offload enabled for low memory")
            except:
                pass

            self.is_initialized = True

            if progress_callback:
                progress_callback("Models loaded successfully!", 100)

            # Memory status
            if torch.cuda.is_available():
                memory_used = torch.cuda.memory_allocated() / 1024**3
                memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3
                logger.info(f"📊 GPU Memory: {memory_used:.1f}GB / {memory_total:.1f}GB")

        except Exception as e:
            logger.error(f"❌ Model loading failed: {e}")
            raise RuntimeError(f"Failed to load models: {str(e)}")

    def analyze_image_with_clip(self, image: Image.Image) -> str:
        """Analyze uploaded image using OpenCLIP - KEEP SAME"""
        if not self.clip_model:
            return "Image analysis not available"

        try:
            image_input = self.clip_preprocess(image).unsqueeze(0).to(self.device)

            categories = [
                "a photo of a person",
                "a photo of an animal",
                "a photo of an object",
                "a photo of a character",
                "a photo of a cartoon",
                "a photo of nature",
                "a photo of a building",
                "a photo of a landscape"
            ]

            text_inputs = self.clip_tokenizer(categories).to(self.device)

            with torch.no_grad():
                image_features = self.clip_model.encode_image(image_input)
                text_features = self.clip_model.encode_text(text_inputs)

                image_features /= image_features.norm(dim=-1, keepdim=True)
                text_features /= text_features.norm(dim=-1, keepdim=True)

                similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)

                best_match_idx = similarity.argmax().item()
                confidence = similarity[0, best_match_idx].item()

                category = categories[best_match_idx].replace("a photo of ", "")

                return f"Detected: {category} (confidence: {confidence:.1%})"

        except Exception as e:
            logger.error(f"CLIP analysis failed: {e}")
            return "Image analysis failed"

    def enhance_prompt(
        self,
        user_prompt: str,
        foreground_image: Image.Image
    ) -> str:
        """
        Smart prompt enhancement based on image analysis.
        Adds appropriate lighting, atmosphere, and quality descriptors.

        Args:
            user_prompt: Original user-provided prompt
            foreground_image: Foreground image for analysis

        Returns:
            Enhanced prompt string
        """
        logger.info("✨ Enhancing prompt based on image analysis...")

        try:
            # Analyze image characteristics
            img_array = np.array(foreground_image.convert('RGB'))

            # Analyze color temperature 
            # Convert to LAB to analyze color temperature
            lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
            avg_a = np.mean(lab[:, :, 1])  # a channel: green(-) to red(+)
            avg_b = np.mean(lab[:, :, 2])  # b channel: blue(-) to yellow(+)

            # Determine warm/cool tone
            is_warm = avg_b > 128  # b > 128 means more yellow/warm

            # Analyze brightness 
            gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
            avg_brightness = np.mean(gray)
            is_bright = avg_brightness > 127

            # Get subject type from CLIP 
            clip_analysis = self.analyze_image_with_clip(foreground_image)
            subject_type = "unknown"

            if "person" in clip_analysis.lower():
                subject_type = "person"
            elif "animal" in clip_analysis.lower():
                subject_type = "animal"
            elif "object" in clip_analysis.lower():
                subject_type = "object"
            elif "character" in clip_analysis.lower() or "cartoon" in clip_analysis.lower():
                subject_type = "character"
            elif "nature" in clip_analysis.lower() or "landscape" in clip_analysis.lower():
                subject_type = "nature"

            # Build prompt fragments library
            lighting_options = {
                "warm_bright": "warm golden hour lighting, soft natural light",
                "warm_dark": "warm ambient lighting, cozy atmosphere",
                "cool_bright": "bright daylight, clear sky lighting",
                "cool_dark": "soft diffused light, gentle shadows"
            }

            atmosphere_options = {
                "person": "professional, elegant composition",
                "animal": "natural, harmonious setting",
                "object": "clean product photography style",
                "character": "artistic, vibrant, imaginative",
                "nature": "scenic, peaceful atmosphere",
                "unknown": "balanced composition"
            }

            quality_modifiers = "high quality, detailed, sharp focus, photorealistic"

            # Select appropriate fragments 
            # Lighting based on color temperature and brightness
            if is_warm and is_bright:
                lighting = lighting_options["warm_bright"]
            elif is_warm and not is_bright:
                lighting = lighting_options["warm_dark"]
            elif not is_warm and is_bright:
                lighting = lighting_options["cool_bright"]
            else:
                lighting = lighting_options["cool_dark"]

            # Atmosphere based on subject type
            atmosphere = atmosphere_options.get(subject_type, atmosphere_options["unknown"])

            # Check for conflicts in user prompt 
            user_prompt_lower = user_prompt.lower()

            # Avoid adding conflicting descriptions
            if "sunset" in user_prompt_lower or "golden" in user_prompt_lower:
                lighting = ""  # User already specified lighting
            if "dark" in user_prompt_lower or "night" in user_prompt_lower:
                lighting = lighting.replace("bright", "").replace("daylight", "")

            # Combine enhanced prompt 
            fragments = [user_prompt]

            if lighting:
                fragments.append(lighting)
            if atmosphere:
                fragments.append(atmosphere)
            fragments.append(quality_modifiers)

            enhanced_prompt = ", ".join(filter(None, fragments))

            logger.info(f"📝 Original prompt: {user_prompt[:50]}...")
            logger.info(f"📝 Enhanced prompt: {enhanced_prompt[:80]}...")

            return enhanced_prompt

        except Exception as e:
            logger.warning(f"⚠️ Prompt enhancement failed: {e}, using original prompt")
            return user_prompt

    def _prepare_image(self, image: Image.Image) -> Image.Image:
        """Prepare image for processing - KEEP SAME"""
        # Convert to RGB
        if image.mode != 'RGB':
            image = image.convert('RGB')

        # Resize if too large
        width, height = image.size
        max_size = self.max_image_size

        if width > max_size or height > max_size:
            ratio = min(max_size/width, max_size/height)
            new_width = int(width * ratio)
            new_height = int(height * ratio)
            image = image.resize((new_width, new_height), Image.LANCZOS)

        # Ensure dimensions are multiple of 8
        width, height = image.size
        new_width = (width // 8) * 8
        new_height = (height // 8) * 8

        if new_width != width or new_height != height:
            image = image.resize((new_width, new_height), Image.LANCZOS)

        return image

    def generate_background(
        self,
        prompt: str,
        width: int,
        height: int,
        negative_prompt: str = "blurry, low quality, distorted",
        num_inference_steps: int = 25,
        guidance_scale: float = 7.5,
        progress_callback: Optional[callable] = None
    ) -> Image.Image:
        """Generate complete background using standard text-to-image - KEEP SAME"""

        if not self.is_initialized:
            raise RuntimeError("Models not loaded. Call load_models() first.")

        logger.info(f"🎨 Generating background: {prompt[:50]}...")

        try:
            with torch.inference_mode():
                if progress_callback:
                    progress_callback("Generating background with SDXL...", 50)

                # Standard text-to-image generation - KEEP SAME
                result = self.pipeline(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    width=width,
                    height=height,
                    num_inference_steps=num_inference_steps,
                    guidance_scale=guidance_scale,
                    generator=torch.Generator(device=self.device).manual_seed(42)
                )

                generated_image = result.images[0]

                if progress_callback:
                    progress_callback("Background generated successfully!", 100)

                logger.info("✅ Background generation completed!")
                return generated_image

        except torch.cuda.OutOfMemoryError:
            logger.error("❌ GPU memory exhausted")
            self._ultra_memory_cleanup()
            raise RuntimeError("GPU memory insufficient")

        except Exception as e:
            logger.error(f"❌ Background generation failed: {e}")
            raise RuntimeError(f"Generation failed: {str(e)}")

    def generate_and_combine(
        self,
        original_image: Image.Image,
        prompt: str,
        combination_mode: str = "center",
        focus_mode: str = "person",
        negative_prompt: str = "blurry, low quality, distorted",
        num_inference_steps: int = 25,
        guidance_scale: float = 7.5,
        progress_callback: Optional[callable] = None,
        enable_prompt_enhancement: bool = True
    ) -> Dict[str, Any]:
        """
        Generate background and combine with foreground using advanced blending.

        Args:
            original_image: Foreground image
            prompt: User's background description
            combination_mode: How to position foreground ("center", "left_half", "right_half", "full")
            focus_mode: Focus type ("person" for tight crop, "scene" for wider context)
            negative_prompt: What to avoid in generation
            num_inference_steps: SDXL inference steps
            guidance_scale: Classifier-free guidance scale
            progress_callback: Progress reporting callback
            enable_prompt_enhancement: Whether to use smart prompt enhancement

        Returns:
            Dictionary containing results and metadata
        """

        if not self.is_initialized:
            raise RuntimeError("Models not loaded. Call load_models() first.")

        logger.info(f"🎨 Starting generation and combination with advanced features...")

        try:
            # Enhanced memory management
            if self.generation_count % self.cleanup_frequency == 0:
                self._ultra_memory_cleanup()

            if progress_callback:
                progress_callback("Analyzing uploaded image...", 5)

            # Analyze original image
            image_analysis = self.analyze_image_with_clip(original_image)

            if progress_callback:
                progress_callback("Preparing images...", 10)

            # Prepare original image
            processed_original = self._prepare_image(original_image)
            target_width, target_height = processed_original.size

            if progress_callback:
                progress_callback("Optimizing prompt...", 15)

            # Smart prompt enhancement
            if enable_prompt_enhancement:
                enhanced_prompt = self.enhance_prompt(prompt, processed_original)
            else:
                enhanced_prompt = f"{prompt}, high quality, detailed, photorealistic, beautiful scenery"

            enhanced_negative = f"{negative_prompt}, people, characters, cartoons, logos"

            if progress_callback:
                progress_callback("Generating complete background scene...", 25)

            def bg_progress(msg, pct):
                if progress_callback:
                    progress_callback(f"Background: {msg}", 25 + (pct/100) * 50)

            generated_background = self.generate_background(
                prompt=enhanced_prompt,
                width=target_width,
                height=target_height,
                negative_prompt=enhanced_negative,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                progress_callback=bg_progress
            )

            if progress_callback:
                progress_callback("Creating intelligent mask for person detection...", 80)

            # Use intelligent mask generation with enhanced logging
            logger.info("🎭 Starting intelligent mask generation...")
            combination_mask = self.mask_generator.create_gradient_based_mask(
                processed_original,
                combination_mode,
                focus_mode
            )

            # Log mask quality for debugging
            try:
                mask_array = np.array(combination_mask)
                logger.info(f"📊 Generated mask stats - Mean: {mask_array.mean():.1f}, Non-zero pixels: {np.count_nonzero(mask_array)}")
            except Exception as mask_debug_error:
                logger.warning(f"⚠️ Mask debug logging failed: {mask_debug_error}")

            if progress_callback:
                progress_callback("Advanced image blending...", 90)

            # Use advanced image blending with logging
            logger.info("🖌️ Starting advanced image blending...")
            combined_image = self.image_blender.simple_blend_images(
                processed_original,
                generated_background,
                combination_mask
            )
            logger.info("✅ Image blending completed successfully")

            if progress_callback:
                progress_callback("Creating debug images...", 95)

            # Generate debug images
            debug_images = self.image_blender.create_debug_images(
                processed_original,
                generated_background,
                combination_mask,
                combined_image
            )

            # Memory cleanup after generation
            self._ultra_memory_cleanup()

            # Update generation count
            self.generation_count += 1

            if progress_callback:
                progress_callback("Generation complete!", 100)

            logger.info("✅ Complete generation and combination with fixed blending successful!")

            return {
                "combined_image": combined_image,
                "generated_scene": generated_background,
                "original_image": processed_original,
                "combination_mask": combination_mask,
                "debug_mask_gray": debug_images["mask_gray"],
                "debug_alpha_heatmap": debug_images["alpha_heatmap"],
                "image_analysis": image_analysis,
                "enhanced_prompt": enhanced_prompt,
                "original_prompt": prompt,
                "success": True,
                "generation_count": self.generation_count
            }

        except Exception as e:
            error_traceback = traceback.format_exc()
            logger.error(f"❌ Generation and combination failed: {str(e)}")
            logger.error(f"📍 Full traceback:\n{error_traceback}")
            print(f"❌ DETAILED ERROR in scene_weaver_core.generate_and_combine:")
            print(f"Error: {str(e)}")
            print(f"Traceback:\n{error_traceback}")
            self._ultra_memory_cleanup()  # Cleanup on error too
            return {
                "success": False,
                "error": f"Failed: {str(e)}"
            }

    def generate_diversity_variants(
        self,
        original_image: Image.Image,
        prompt: str,
        selected_styles: Optional[List[str]] = None,
        combination_mode: str = "center",
        focus_mode: str = "person",
        negative_prompt: str = "blurry, low quality, distorted",
        progress_callback: Optional[callable] = None
    ) -> Dict[str, Any]:
        """
        Generate multiple style variants of the background.
        Uses reduced quality for faster preview generation.

        Args:
            original_image: Foreground image
            prompt: Base background description
            selected_styles: List of style keys to use (None = all styles)
            combination_mode: Foreground positioning mode
            focus_mode: Focus type for mask generation
            negative_prompt: Base negative prompt
            progress_callback: Progress callback function

        Returns:
            Dictionary containing variants and metadata
        """
        if not self.is_initialized:
            raise RuntimeError("Models not loaded. Call load_models() first.")

        logger.info("🎨 Starting diversity generation mode...")

        # Determine which styles to generate
        styles_to_generate = selected_styles or list(self.STYLE_PRESETS.keys())
        num_styles = len(styles_to_generate)

        results = {
            "variants": [],
            "success": True,
            "num_variants": 0
        }

        try:
            # Pre-process image once
            processed_original = self._prepare_image(original_image)
            target_width, target_height = processed_original.size

            # Reduce resolution for faster generation
            preview_size = min(768, max(target_width, target_height))
            scale = preview_size / max(target_width, target_height)
            preview_width = int(target_width * scale) // 8 * 8
            preview_height = int(target_height * scale) // 8 * 8

            # Generate mask once (reusable for all variants)
            if progress_callback:
                progress_callback("Creating foreground mask...", 5)

            combination_mask = self.mask_generator.create_gradient_based_mask(
                processed_original, combination_mode, focus_mode
            )

            # Resize mask for preview resolution
            preview_mask = combination_mask.resize((preview_width, preview_height), Image.LANCZOS)
            preview_original = processed_original.resize((preview_width, preview_height), Image.LANCZOS)

            # Generate each style variant
            for idx, style_key in enumerate(styles_to_generate):
                if style_key not in self.STYLE_PRESETS:
                    logger.warning(f"⚠️ Unknown style: {style_key}, skipping")
                    continue

                style = self.STYLE_PRESETS[style_key]
                style_name = style["name"]

                if progress_callback:
                    base_pct = 10 + (idx / num_styles) * 80
                    progress_callback(f"Generating {style_name} variant...", int(base_pct))

                logger.info(f"🎨 Generating variant: {style_name}")

                try:
                    # Build style-specific prompt
                    styled_prompt = f"{prompt}, {style['modifier']}, high quality, detailed"
                    styled_negative = f"{negative_prompt}, {style['negative_extra']}, people, characters"

                    # Generate background with reduced steps for speed
                    background = self.generate_background(
                        prompt=styled_prompt,
                        width=preview_width,
                        height=preview_height,
                        negative_prompt=styled_negative,
                        num_inference_steps=15,  # Reduced for speed
                        guidance_scale=style["guidance_scale"]
                    )

                    # Blend images
                    combined = self.image_blender.simple_blend_images(
                        preview_original,
                        background,
                        preview_mask,
                        use_multi_scale=False  # Skip for speed
                    )

                    results["variants"].append({
                        "style_key": style_key,
                        "style_name": style_name,
                        "combined_image": combined,
                        "background": background,
                        "prompt_used": styled_prompt
                    })

                    # Memory cleanup between variants
                    self._ultra_memory_cleanup()

                except Exception as variant_error:
                    logger.error(f"❌ Failed to generate {style_name} variant: {variant_error}")
                    continue

            results["num_variants"] = len(results["variants"])

            if progress_callback:
                progress_callback("Diversity generation complete!", 100)

            logger.info(f"✅ Generated {results['num_variants']} style variants")
            return results

        except Exception as e:
            logger.error(f"❌ Diversity generation failed: {e}")
            self._ultra_memory_cleanup()
            return {
                "variants": [],
                "success": False,
                "error": str(e),
                "num_variants": 0
            }

    def regenerate_high_quality(
        self,
        original_image: Image.Image,
        prompt: str,
        style_key: str,
        combination_mode: str = "center",
        focus_mode: str = "person",
        negative_prompt: str = "blurry, low quality, distorted",
        progress_callback: Optional[callable] = None
    ) -> Dict[str, Any]:
        """
        Regenerate a specific style at full quality.

        Args:
            original_image: Original foreground image
            prompt: Base prompt
            style_key: Style preset key to use
            combination_mode: Foreground positioning
            focus_mode: Mask focus mode
            negative_prompt: Base negative prompt
            progress_callback: Progress callback

        Returns:
            Full quality result dictionary
        """
        if style_key not in self.STYLE_PRESETS:
            return {"success": False, "error": f"Unknown style: {style_key}"}

        style = self.STYLE_PRESETS[style_key]

        # Build styled prompt
        styled_prompt = f"{prompt}, {style['modifier']}"
        styled_negative = f"{negative_prompt}, {style['negative_extra']}"

        # Use full generate_and_combine with style parameters
        return self.generate_and_combine(
            original_image=original_image,
            prompt=styled_prompt,
            combination_mode=combination_mode,
            focus_mode=focus_mode,
            negative_prompt=styled_negative,
            num_inference_steps=25,  # Full quality
            guidance_scale=style["guidance_scale"],
            progress_callback=progress_callback,
            enable_prompt_enhancement=True
        )

    def get_memory_status(self) -> Dict[str, Any]:
        """Enhanced memory status reporting"""
        status = {"device": self.device}

        if torch.cuda.is_available():
            allocated = torch.cuda.memory_allocated() / 1024**3
            total = torch.cuda.get_device_properties(0).total_memory / 1024**3
            cached = torch.cuda.memory_reserved() / 1024**3

            status.update({
                "gpu_allocated_gb": round(allocated, 2),
                "gpu_total_gb": round(total, 2),
                "gpu_cached_gb": round(cached, 2),
                "gpu_free_gb": round(total - allocated, 2),
                "gpu_usage_percent": round((allocated / total) * 100, 1),
                "generation_count": self.generation_count
            })

        return status

    # INPAINTING FACADE METHODS
    def get_inpainting_module(self):
        """
        Get or create the InpaintingModule instance.

        Implements lazy loading - module is only created when first accessed.

        Returns
        -------
        InpaintingModule
            The inpainting module instance
        """
        if self._inpainting_module is None:
            self._inpainting_module = InpaintingModule(device=self.device)
            self._inpainting_module.set_model_manager(self._model_manager)
            logger.info("InpaintingModule created (lazy load)")

        return self._inpainting_module

    def switch_to_inpainting_mode(
        self,
        conditioning_type: str = "canny",
        progress_callback: Optional[Callable[[str, int], None]] = None
    ) -> bool:
        """
        Switch to inpainting mode, unloading background pipeline.

        Implements mutual exclusion between pipelines to conserve memory.

        Parameters
        ----------
        conditioning_type : str
            ControlNet conditioning type: "canny" or "depth"
        progress_callback : callable, optional
            Progress update function(message, percentage)

        Returns
        -------
        bool
            True if switch was successful
        """
        logger.info(f"Switching to inpainting mode (conditioning: {conditioning_type})")

        try:
            # Unload background pipeline first
            if self.pipeline is not None:
                if progress_callback:
                    progress_callback("Unloading background pipeline...", 10)

                del self.pipeline
                self.pipeline = None
                self._ultra_memory_cleanup()
                logger.info("Background pipeline unloaded")

            # Load inpainting pipeline
            if progress_callback:
                progress_callback("Loading inpainting pipeline...", 20)

            inpaint_module = self.get_inpainting_module()

            def inpaint_progress(msg, pct):
                if progress_callback:
                    # Map inpainting progress (0-100) to (20-90)
                    mapped_pct = 20 + int(pct * 0.7)
                    progress_callback(msg, mapped_pct)

            success, error_msg = inpaint_module.load_inpainting_pipeline(
                conditioning_type=conditioning_type,
                progress_callback=inpaint_progress
            )

            if success:
                self._current_mode = "inpainting"
                self._inpainting_initialized = True

                if progress_callback:
                    progress_callback("Inpainting mode ready!", 100)

                logger.info("Successfully switched to inpainting mode")
            else:
                self._last_inpainting_error = error_msg
                logger.error(f"Failed to load inpainting pipeline: {error_msg}")

            return success

        except Exception as e:
            traceback.print_exc()
            self._last_inpainting_error = str(e)
            logger.error(f"Failed to switch to inpainting mode: {e}")
            if progress_callback:
                progress_callback(f"Error: {str(e)}", 0)
            return False

    def switch_to_background_mode(
        self,
        progress_callback: Optional[Callable[[str, int], None]] = None
    ) -> bool:
        """
        Switch back to background generation mode.

        Parameters
        ----------
        progress_callback : callable, optional
            Progress update function

        Returns
        -------
        bool
            True if switch was successful
        """
        logger.info("Switching to background generation mode")

        try:
            # Unload inpainting pipeline
            if self._inpainting_module is not None and self._inpainting_module.is_initialized:
                if progress_callback:
                    progress_callback("Unloading inpainting pipeline...", 10)

                self._inpainting_module._unload_pipeline()
                self._ultra_memory_cleanup()

            # Reload background pipeline
            if progress_callback:
                progress_callback("Loading background pipeline...", 30)

            # Reset initialization flag to force reload
            self.is_initialized = False
            self.load_models(progress_callback=progress_callback)

            self._current_mode = "background"

            if progress_callback:
                progress_callback("Background mode ready!", 100)

            return True

        except Exception as e:
            logger.error(f"Failed to switch to background mode: {e}")
            return False

    def execute_inpainting(
        self,
        image: Image.Image,
        mask: Image.Image,
        prompt: str,
        preview_only: bool = False,
        template_key: Optional[str] = None,
        progress_callback: Optional[Callable[[str, int], None]] = None,
        **kwargs
    ) -> Dict[str, Any]:
        """
        Execute inpainting operation through the Facade.

        This is the main entry point for inpainting functionality.

        Parameters
        ----------
        image : PIL.Image
            Original image to inpaint
        mask : PIL.Image
            Inpainting mask (white = area to regenerate)
        prompt : str
            Text description of desired content
        preview_only : bool
            If True, generate quick preview only
        template_key : str, optional
            Inpainting template key to use
        progress_callback : callable, optional
            Progress update function
        **kwargs
            Additional inpainting parameters

        Returns
        -------
        dict
            Result dictionary with images and metadata
        """
        # Ensure inpainting mode is active
        if self._current_mode != "inpainting" or not self._inpainting_initialized:
            conditioning = kwargs.get('conditioning_type', 'canny')
            if not self.switch_to_inpainting_mode(conditioning, progress_callback):
                error_detail = getattr(self, '_last_inpainting_error', 'Unknown error')
                return {
                    "success": False,
                    "error": f"Failed to initialize inpainting mode: {error_detail}"
                }

        inpaint_module = self.get_inpainting_module()

        # Apply template if specified
        if template_key:
            template_mgr = InpaintingTemplateManager()
            template = template_mgr.get_template(template_key)

            if template:
                # Build prompt from template
                prompt = template_mgr.build_prompt(template_key, prompt)
                # Apply template parameters as defaults
                params = template_mgr.get_parameters_for_template(template_key)
                for key, value in params.items():
                    if key not in kwargs:
                        kwargs[key] = value

                # Pass enhance_prompt flag to inpainting module
                if 'enhance_prompt' not in kwargs:
                    kwargs['enhance_prompt'] = template.enhance_prompt

        # Execute inpainting
        result = inpaint_module.execute_inpainting(
            image=image,
            mask=mask,
            prompt=prompt,
            preview_only=preview_only,
            progress_callback=progress_callback,
            template_key=template_key,  # Pass template_key for conditional prompt enhancement
            **kwargs
        )

        # Convert InpaintingResult to dictionary format
        return {
            "success": result.success,
            "combined_image": result.blended_image or result.result_image,
            "generated_image": result.result_image,
            "preview_image": result.preview_image,
            "control_image": result.control_image,
            "original_image": image,
            "mask": mask,
            "quality_score": result.quality_score,
            "generation_time": result.generation_time,
            "metadata": result.metadata,
            "error": result.error_message if not result.success else None
        }

    def execute_inpainting_with_optimization(
        self,
        image: Image.Image,
        mask: Image.Image,
        prompt: str,
        progress_callback: Optional[Callable[[str, int], None]] = None,
        **kwargs
    ) -> Dict[str, Any]:
        """
        Execute inpainting with automatic quality optimization.

        Retries with adjusted parameters if quality is below threshold.

        Parameters
        ----------
        image : PIL.Image
            Original image
        mask : PIL.Image
            Inpainting mask
        prompt : str
            Text prompt
        progress_callback : callable, optional
            Progress callback
        **kwargs
            Additional parameters

        Returns
        -------
        dict
            Optimized result dictionary
        """
        # Ensure inpainting mode
        if self._current_mode != "inpainting" or not self._inpainting_initialized:
            conditioning = kwargs.get('conditioning_type', 'canny')
            if not self.switch_to_inpainting_mode(conditioning, progress_callback):
                error_detail = getattr(self, '_last_inpainting_error', 'Unknown error')
                return {
                    "success": False,
                    "error": f"Failed to initialize inpainting mode: {error_detail}"
                }

        inpaint_module = self.get_inpainting_module()

        result = inpaint_module.execute_with_auto_optimization(
            image=image,
            mask=mask,
            prompt=prompt,
            quality_checker=self.quality_checker,
            progress_callback=progress_callback,
            **kwargs
        )

        return {
            "success": result.success,
            "combined_image": result.blended_image or result.result_image,
            "generated_image": result.result_image,
            "preview_image": result.preview_image,
            "control_image": result.control_image,
            "quality_score": result.quality_score,
            "quality_details": result.quality_details,
            "retries": result.retries,
            "generation_time": result.generation_time,
            "metadata": result.metadata,
            "error": result.error_message if not result.success else None
        }

    def get_current_mode(self) -> str:
        """
        Get current operation mode.

        Returns
        -------
        str
            "background" or "inpainting"
        """
        return self._current_mode

    def is_inpainting_ready(self) -> bool:
        """
        Check if inpainting is ready to use.

        Returns
        -------
        bool
            True if inpainting module is loaded and ready
        """
        return (
            self._inpainting_module is not None and
            self._inpainting_module.is_initialized
        )

    def get_inpainting_status(self) -> Dict[str, Any]:
        """
        Get inpainting module status.

        Returns
        -------
        dict
            Status information
        """
        if self._inpainting_module is None:
            return {
                "initialized": False,
                "mode": self._current_mode
            }

        status = self._inpainting_module.get_status()
        status["mode"] = self._current_mode
        return status