Spaces:
Running
on
Zero
Running
on
Zero
File size: 41,827 Bytes
ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 94367e1 ca80d1d fcac4bd a3f68be ca80d1d b323ef8 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d 7d583e3 ca80d1d a3f68be fcac4bd 7d583e3 c40071d 7d583e3 c40071d 7d583e3 c40071d 7d583e3 c40071d 7d583e3 ba54a64 7d583e3 4f31372 7d583e3 4f31372 7d583e3 4f31372 7d583e3 4f31372 7d583e3 4f31372 7d583e3 64b10ca 4f31372 7d583e3 4f31372 7d583e3 4f31372 7d583e3 c40071d 7d583e3 ba54a64 7d583e3 59d17e6 f66b3c8 59d17e6 7d583e3 4f31372 7d583e3 fcac4bd 7d583e3 d878608 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 |
import logging
import time
import traceback
from pathlib import Path
from typing import Optional, Tuple, Dict, Any, List
from PIL import Image
import numpy as np
import cv2
import gradio as gr
import spaces
from scene_weaver_core import SceneWeaverCore
from css_styles import CSSStyles
from scene_templates import SceneTemplateManager
from inpainting_templates import InpaintingTemplateManager
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(name)s] %(levelname)s: %(message)s',
datefmt='%H:%M:%S'
)
class UIManager:
"""
Gradio UI Manager with support for background generation and inpainting.
Provides a professional interface with mode switching, template selection,
and advanced parameter controls.
Attributes:
sceneweaver: SceneWeaverCore instance
template_manager: Scene template manager
inpainting_template_manager: Inpainting template manager
"""
def __init__(self):
self.sceneweaver = SceneWeaverCore()
self.template_manager = SceneTemplateManager()
self.inpainting_template_manager = InpaintingTemplateManager()
self.generation_history = []
self.inpainting_history = []
self._preview_sensitivity = 0.5
self._current_mode = "background" # "background" or "inpainting"
def apply_template(self, display_name: str, current_negative: str) -> Tuple[str, str, float]:
"""
Apply a scene template to the prompt fields.
Args:
display_name: The display name from dropdown (e.g., "🏢 Modern Office")
current_negative: Current negative prompt value
Returns:
Tuple of (prompt, negative_prompt, guidance_scale)
"""
if not display_name:
return "", current_negative, 7.5
# Convert display name to template key
template_key = self.template_manager.get_template_key_from_display(display_name)
if not template_key:
return "", current_negative, 7.5
template = self.template_manager.get_template(template_key)
if template:
prompt = template.prompt
negative = self.template_manager.get_negative_prompt_for_template(
template_key, current_negative
)
guidance = template.guidance_scale
return prompt, negative, guidance
return "", current_negative, 7.5
def quick_preview(
self,
uploaded_image: Optional[Image.Image],
sensitivity: float = 0.5
) -> Optional[Image.Image]:
"""
Generate quick foreground preview using lightweight traditional methods.
Args:
uploaded_image: Uploaded PIL Image
sensitivity: Detection sensitivity (0.0 - 1.0)
Returns:
Preview image with colored overlay or None
"""
if uploaded_image is None:
return None
try:
logger.info(f"Generating quick preview (sensitivity={sensitivity:.2f})")
img_array = np.array(uploaded_image.convert('RGB'))
height, width = img_array.shape[:2]
max_preview_size = 512
if max(width, height) > max_preview_size:
scale = max_preview_size / max(width, height)
new_w = int(width * scale)
new_h = int(height * scale)
img_array = cv2.resize(img_array, (new_w, new_h), interpolation=cv2.INTER_AREA)
height, width = new_h, new_w
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
low_threshold = int(30 + (1 - sensitivity) * 50)
high_threshold = int(100 + (1 - sensitivity) * 100)
edges = cv2.Canny(blurred, low_threshold, high_threshold)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
dilated = cv2.dilate(edges, kernel, iterations=2)
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
mask = np.zeros((height, width), dtype=np.uint8)
if contours:
sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)
min_area = (width * height) * 0.01 * (1 - sensitivity)
for contour in sorted_contours:
if cv2.contourArea(contour) > min_area:
cv2.fillPoly(mask, [contour], 255)
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel_close)
overlay = img_array.copy().astype(np.float32)
fg_mask = mask > 127
overlay[fg_mask] = overlay[fg_mask] * 0.5 + np.array([0, 255, 0]) * 0.5
bg_mask = mask <= 127
overlay[bg_mask] = overlay[bg_mask] * 0.5 + np.array([255, 0, 0]) * 0.5
overlay = np.clip(overlay, 0, 255).astype(np.uint8)
original_size = uploaded_image.size
preview_image = Image.fromarray(overlay)
if preview_image.size != original_size:
preview_image = preview_image.resize(original_size, Image.LANCZOS)
logger.info("Quick preview generated successfully")
return preview_image
except Exception as e:
logger.error(f"Quick preview failed: {e}")
return None
def _save_result(self, combined_image: Image.Image, prompt: str):
"""Save result with memory-conscious history management"""
if not combined_image:
return
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
combined_image.save(output_dir / "latest_combined.png")
self.generation_history.append({
"prompt": prompt,
"timestamp": time.time()
})
max_history = self.sceneweaver.max_history
if len(self.generation_history) > max_history:
self.generation_history = self.generation_history[-max_history:]
@spaces.GPU(duration=240)
def generate_handler(
self,
uploaded_image: Optional[Image.Image],
prompt: str,
combination_mode: str,
focus_mode: str,
negative_prompt: str,
steps: int,
guidance: float,
progress=gr.Progress()
):
"""Enhanced generation handler with memory management and ZeroGPU support"""
if uploaded_image is None:
return None, None, None, "Please upload an image to get started!", gr.update(visible=False)
if not prompt.strip():
return None, None, None, "Please describe the background scene you'd like!", gr.update(visible=False)
try:
if not self.sceneweaver.is_initialized:
progress(0.05, desc="Loading AI models (first time may take 2-3 minutes)...")
def init_progress(msg, pct):
if pct < 30:
desc = "Loading image analysis models..."
elif pct < 60:
desc = "Loading Stable Diffusion XL..."
elif pct < 90:
desc = "Applying memory optimizations..."
else:
desc = "Almost ready..."
progress(0.05 + (pct/100) * 0.2, desc=desc)
self.sceneweaver.load_models(progress_callback=init_progress)
def gen_progress(msg, pct):
if pct < 20:
desc = "Analyzing your image..."
elif pct < 50:
desc = "Generating background scene..."
elif pct < 80:
desc = "Blending foreground and background..."
elif pct < 95:
desc = "Applying final touches..."
else:
desc = "Complete!"
progress(0.25 + (pct/100) * 0.75, desc=desc)
result = self.sceneweaver.generate_and_combine(
original_image=uploaded_image,
prompt=prompt,
combination_mode=combination_mode,
focus_mode=focus_mode,
negative_prompt=negative_prompt,
num_inference_steps=int(steps),
guidance_scale=float(guidance),
progress_callback=gen_progress
)
if result["success"]:
combined = result["combined_image"]
generated = result["generated_scene"]
original = result["original_image"]
self._save_result(combined, prompt)
status_msg = "Image created successfully!"
return combined, generated, original, status_msg, gr.update(visible=True)
else:
error_msg = result.get("error", "Something went wrong")
return None, None, None, f"Error: {error_msg}", gr.update(visible=False)
except Exception as e:
error_traceback = traceback.format_exc()
logger.error(f"Generation handler error: {str(e)}")
logger.error(f"Traceback:\n{error_traceback}")
return None, None, None, f"Error: {str(e)}", gr.update(visible=False)
def create_interface(self):
"""Create professional user interface"""
self._css = CSSStyles.get_main_css()
# Check Gradio version for API compatibility
self._gradio_version = gr.__version__
self._gradio_major = int(self._gradio_version.split('.')[0])
# Compatible with Gradio 4.44.0+
# Use minimal constructor arguments for maximum compatibility
with gr.Blocks() as interface:
# Inject CSS (compatible with all Gradio versions)
gr.HTML(f"<style>{self._css}</style>")
# Header
gr.HTML("""
<div class="main-header">
<h1 class="main-title">
<span class="title-emoji">🎨</span>
SceneWeaver
</h1>
<p class="main-subtitle">AI-powered background generation and inpainting with professional edge processing</p>
</div>
""")
# Main Tabs for Mode Selection
with gr.Tabs(elem_id="main-mode-tabs") as main_tabs:
# Background Generation Tab
with gr.Tab("Background Generation", elem_id="bg-gen-tab"):
with gr.Row():
# Left Column - Input controls
with gr.Column(scale=1, min_width=350, elem_classes=["feature-card"]):
gr.HTML("""
<div class="card-content">
<h3 class="card-title">
<span class="section-emoji">📸</span>
Upload & Generate
</h3>
</div>
""")
uploaded_image = gr.Image(
label="Upload Your Image",
type="pil",
height=280,
elem_classes=["input-field"]
)
# Scene Template Selector (without Accordion to fix dropdown positioning in Gradio 5.x)
template_dropdown = gr.Dropdown(
label="Scene Templates",
choices=[""] + self.template_manager.get_template_choices_sorted(),
value="",
info="24 curated scenes sorted A-Z (optional)",
elem_classes=["template-dropdown"]
)
prompt_input = gr.Textbox(
label="Background Scene Description",
placeholder="Select a template above or describe your own scene...",
lines=3,
elem_classes=["input-field"]
)
combination_mode = gr.Dropdown(
label="Composition Mode",
choices=["center", "left_half", "right_half", "full"],
value="center",
info="center=Smart Center | left_half=Left Half | right_half=Right Half | full=Full Image",
elem_classes=["input-field"]
)
focus_mode = gr.Dropdown(
label="Focus Mode",
choices=["person", "scene"],
value="person",
info="person=Tight Crop | scene=Include Surrounding Objects",
elem_classes=["input-field"]
)
with gr.Accordion("Advanced Options", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="blurry, low quality, distorted, people, characters",
lines=2,
elem_classes=["input-field"]
)
steps_slider = gr.Slider(
label="Quality Steps",
minimum=15,
maximum=50,
value=25,
step=5,
elem_classes=["input-field"]
)
guidance_slider = gr.Slider(
label="Guidance Scale",
minimum=5.0,
maximum=15.0,
value=7.5,
step=0.5,
elem_classes=["input-field"]
)
generate_btn = gr.Button(
"Generate Background",
variant="primary",
size="lg",
elem_classes=["primary-button"]
)
# Right Column - Results display
with gr.Column(scale=2, elem_classes=["feature-card"], elem_id="results-gallery-centered"):
gr.HTML("""
<div class="card-content">
<h3 class="card-title">
<span class="section-emoji">🎭</span>
Results Gallery
</h3>
</div>
""")
# Loading notice
gr.HTML("""
<div class="loading-notice">
<span class="loading-notice-icon">⏱️</span>
<span class="loading-notice-text">
<strong>First-time users:</strong> Initial model loading takes 1-2 minutes.
Subsequent generations are much faster (~30s).
</span>
</div>
""")
# Quick start guide
gr.HTML("""
<details class="user-guidance-panel">
<summary class="guidance-summary">
<span class="emoji-enhanced">💡</span>
Quick Start Guide
</summary>
<div class="guidance-content">
<p><strong>Step 1:</strong> Upload any image with a clear subject</p>
<p><strong>Step 2:</strong> Describe or Choose your desired background scene</p>
<p><strong>Step 3:</strong> Choose composition mode (center works best)</p>
<p><strong>Step 4:</strong> Click Generate and wait for the magic!</p>
<p><strong>Tip:</strong> For dark clothing, ensure good lighting in original photo.</p>
</div>
</details>
""")
with gr.Tabs():
with gr.TabItem("Final Result"):
combined_output = gr.Image(
label="Your Generated Image",
elem_classes=["result-gallery"],
show_label=False
)
with gr.TabItem("Background"):
generated_output = gr.Image(
label="Generated Background",
elem_classes=["result-gallery"],
show_label=False
)
with gr.TabItem("Original"):
original_output = gr.Image(
label="Processed Original",
elem_classes=["result-gallery"],
show_label=False
)
status_output = gr.Textbox(
label="Status",
value="Ready to create! Upload an image and describe your vision.",
interactive=False,
elem_classes=["status-panel", "status-ready"]
)
with gr.Row():
download_btn = gr.DownloadButton(
"Download Result",
value=None,
visible=False,
elem_classes=["secondary-button"]
)
clear_btn = gr.Button(
"Clear All",
elem_classes=["secondary-button"]
)
memory_btn = gr.Button(
"Clean Memory",
elem_classes=["secondary-button"]
)
# Event handlers for Background Generation Tab
# Template selection handler
template_dropdown.change(
fn=self.apply_template,
inputs=[template_dropdown, negative_prompt],
outputs=[prompt_input, negative_prompt, guidance_slider]
)
generate_btn.click(
fn=self.generate_handler,
inputs=[
uploaded_image,
prompt_input,
combination_mode,
focus_mode,
negative_prompt,
steps_slider,
guidance_slider
],
outputs=[
combined_output,
generated_output,
original_output,
status_output,
download_btn
]
)
clear_btn.click(
fn=lambda: (None, None, None, "Ready to create!", gr.update(visible=False)),
outputs=[combined_output, generated_output, original_output, status_output, download_btn]
)
memory_btn.click(
fn=lambda: self.sceneweaver._ultra_memory_cleanup() or "Memory cleaned!",
outputs=[status_output]
)
combined_output.change(
fn=lambda img: gr.update(value="outputs/latest_combined.png", visible=True) if (img is not None) else gr.update(visible=False),
inputs=[combined_output],
outputs=[download_btn]
)
# End of Background Generation Tab
# Inpainting Tab
self.create_inpainting_tab()
# Footer with tech credits (outside tabs)
gr.HTML("""
<div class="app-footer">
<div class="footer-powered">
<p class="footer-powered-title">Powered By</p>
<div class="footer-tech-grid">
<span class="footer-tech-item">Stable Diffusion XL</span>
<span class="footer-tech-item">OpenCLIP</span>
<span class="footer-tech-item">BiRefNet</span>
<span class="footer-tech-item">rembg</span>
<span class="footer-tech-item">PyTorch</span>
<span class="footer-tech-item">Gradio</span>
</div>
</div>
<div class="footer-divider"></div>
<p class="footer-copyright">
SceneWeaver © 2025 |
Built with <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0" target="_blank">SDXL</a>
and <a href="https://github.com/mlfoundations/open_clip" target="_blank">OpenCLIP</a>
</p>
</div>
""")
return interface
def launch(self, share: bool = True, debug: bool = False):
"""Launch the UI interface"""
interface = self.create_interface()
# Launch kwargs compatible with Gradio 4.44.0+
# Keep minimal for maximum compatibility
launch_kwargs = {
"share": share,
"debug": debug,
"show_error": True,
"quiet": False
}
return interface.launch(**launch_kwargs)
# INPAINTING UI METHODS
def apply_inpainting_template(
self,
display_name: str,
current_prompt: str
) -> Tuple[str, float, int, str]:
"""
Apply an inpainting template to the UI fields.
Parameters
----------
display_name : str
Template display name from dropdown
current_prompt : str
Current prompt content
Returns
-------
tuple
(prompt, conditioning_scale, feather_radius, conditioning_type)
"""
if not display_name:
return current_prompt, 0.7, 8, "canny"
template_key = self.inpainting_template_manager.get_template_key_from_display(display_name)
if not template_key:
return current_prompt, 0.7, 8, "canny"
template = self.inpainting_template_manager.get_template(template_key)
if template:
params = self.inpainting_template_manager.get_parameters_for_template(template_key)
return (
current_prompt,
params.get('controlnet_conditioning_scale', 0.7),
params.get('feather_radius', 8),
params.get('preferred_conditioning', 'canny')
)
return current_prompt, 0.7, 8, "canny"
def extract_mask_from_editor(self, editor_output: Dict[str, Any]) -> Optional[Image.Image]:
"""
Extract mask from Gradio ImageEditor output.
Handles different Gradio versions' output formats.
Parameters
----------
editor_output : dict
Output from gr.ImageEditor component
Returns
-------
PIL.Image or None
Extracted mask as grayscale image
"""
if editor_output is None:
return None
try:
# Gradio 5.x format
if isinstance(editor_output, dict):
# Check for 'layers' key (Gradio 5.x ImageEditor)
if 'layers' in editor_output and editor_output['layers']:
# Get the first layer as mask
layer = editor_output['layers'][0]
if isinstance(layer, np.ndarray):
mask_array = layer
elif isinstance(layer, Image.Image):
mask_array = np.array(layer)
else:
return None
# Check for 'composite' key
elif 'composite' in editor_output:
composite = editor_output['composite']
if isinstance(composite, np.ndarray):
mask_array = composite
elif isinstance(composite, Image.Image):
mask_array = np.array(composite)
else:
return None
else:
return None
elif isinstance(editor_output, np.ndarray):
mask_array = editor_output
elif isinstance(editor_output, Image.Image):
mask_array = np.array(editor_output)
else:
logger.warning(f"Unexpected editor output type: {type(editor_output)}")
return None
# Convert to grayscale mask
if len(mask_array.shape) == 3:
if mask_array.shape[2] == 4:
# RGBA format - extract white brush strokes from RGB channels
# White brush strokes have high RGB values AND high alpha
rgb_part = mask_array[:, :, :3]
alpha_part = mask_array[:, :, 3]
# Convert RGB to grayscale to detect white areas
gray = cv2.cvtColor(rgb_part, cv2.COLOR_RGB2GRAY)
# Combine: white areas (high gray value) with opacity (high alpha)
# This captures white brush strokes
mask_gray = np.minimum(gray, alpha_part)
elif mask_array.shape[2] == 3:
# RGB - convert to grayscale (white areas become white in mask)
mask_gray = cv2.cvtColor(mask_array, cv2.COLOR_RGB2GRAY)
else:
mask_gray = mask_array[:, :, 0]
else:
# Already grayscale
mask_gray = mask_array
return Image.fromarray(mask_gray.astype(np.uint8), mode='L')
except Exception as e:
logger.error(f"Failed to extract mask from editor: {e}")
return None
@spaces.GPU(duration=420)
def inpainting_handler(
self,
image: Optional[Image.Image],
mask_editor: Dict[str, Any],
prompt: str,
template_dropdown: str,
conditioning_type: str,
conditioning_scale: float,
feather_radius: int,
guidance_scale: float,
num_steps: int,
progress: gr.Progress = gr.Progress()
) -> Tuple[Optional[Image.Image], Optional[Image.Image], Optional[Image.Image], str]:
"""
Handle inpainting generation request.
Parameters
----------
image : PIL.Image
Original image to inpaint
mask_editor : dict
Mask editor output
prompt : str
Text description of desired content
template_dropdown : str
Selected template (optional)
conditioning_type : str
ControlNet conditioning type
conditioning_scale : float
ControlNet influence strength
feather_radius : int
Mask feathering radius
guidance_scale : float
Guidance scale for generation
num_steps : int
Number of inference steps
progress : gr.Progress
Progress callback
Returns
-------
tuple
(result_image, control_image, status_message)
"""
if image is None:
return None, None, "⚠️ Please upload an image first"
# Extract mask
mask = self.extract_mask_from_editor(mask_editor)
if mask is None:
return None, None, "⚠️ Please draw a mask on the image"
# Validate mask
mask_array = np.array(mask)
coverage = np.count_nonzero(mask_array > 127) / mask_array.size
if coverage < 0.01:
return None, None, "⚠️ Mask too small - please select a larger area"
if coverage > 0.95:
return None, None, "⚠️ Mask too large - consider using background generation instead"
def progress_callback(msg: str, pct: int):
progress(pct / 100, desc=msg)
try:
start_time = time.time()
# Get template key if selected
template_key = None
if template_dropdown:
template_key = self.inpainting_template_manager.get_template_key_from_display(
template_dropdown
)
# Execute inpainting through SceneWeaverCore facade
result = self.sceneweaver.execute_inpainting(
image=image,
mask=mask,
prompt=prompt,
preview_only=False,
template_key=template_key,
conditioning_type=conditioning_type,
controlnet_conditioning_scale=conditioning_scale,
feather_radius=feather_radius,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
progress_callback=progress_callback
)
elapsed = time.time() - start_time
if result.get('success'):
# Store in history
self.inpainting_history.append({
'result': result.get('combined_image'),
'prompt': prompt,
'time': elapsed
})
if len(self.inpainting_history) > 3:
self.inpainting_history.pop(0)
quality_score = result.get('quality_score', 0)
# Clean, simple status message
status = f"✅ Inpainting complete in {elapsed:.1f}s"
if quality_score > 0:
status += f" | Quality: {quality_score:.0f}/100"
return (
result.get('combined_image'),
result.get('control_image'),
status
)
else:
error_msg = result.get('error', 'Unknown error')
return None, None, f"❌ Inpainting failed: {error_msg}"
except Exception as e:
logger.error(f"Inpainting handler error: {e}")
logger.error(traceback.format_exc())
return None, None, f"❌ Error: {str(e)}"
def create_inpainting_tab(self) -> gr.Tab:
"""
Create the inpainting tab UI.
Returns
-------
gr.Tab
Configured inpainting tab component
"""
with gr.Tab("Inpainting", elem_id="inpainting-tab") as tab:
gr.HTML("""
<div class="inpainting-header">
<h3 style="display: flex; align-items: center; gap: 10px; margin-bottom: 8px;">
ControlNet Inpainting
<span style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 3px 10px;
border-radius: 12px;
font-size: 0.65em;
font-weight: 700;
letter-spacing: 0.5px;
box-shadow: 0 2px 4px rgba(102, 126, 234, 0.3);">
BETA
</span>
</h3>
<p style="color: #666; margin-bottom: 12px;">Draw a mask to select the area you want to regenerate</p>
<div style="background: linear-gradient(to right, #FFF4E6, #FFE8CC);
border-left: 4px solid #FF9500;
padding: 12px 15px;
border-radius: 6px;
margin-top: 10px;
box-shadow: 0 2px 4px rgba(255, 149, 0, 0.1);">
<p style="color: #8B4513; font-size: 0.9em; margin: 0; line-height: 1.5;">
<strong>⚠️ Beta Feature - Continuously Optimizing</strong><br>
Results may vary depending on complexity. Use templates and detailed prompts for best results.
Advanced features (like Add Accessories) may require multiple attempts.
</p>
</div>
</div>
""")
with gr.Row():
# Left column - Input
with gr.Column(scale=1):
# Image upload
inpaint_image = gr.Image(
label="Upload Image",
type="pil",
height=300
)
# Mask editor
mask_editor = gr.ImageEditor(
label="Draw Mask (white = area to inpaint)",
type="pil",
height=300,
brush=gr.Brush(colors=["#FFFFFF"], default_size=20),
eraser=gr.Eraser(default_size=20),
layers=True,
sources=["upload"],
image_mode="RGBA"
)
# Template selection
with gr.Accordion("Inpainting Templates", open=False):
inpaint_template = gr.Dropdown(
choices=[""] + self.inpainting_template_manager.get_template_choices_sorted(),
value="",
label="Select Template",
elem_classes=["template-dropdown"]
)
template_tips = gr.Markdown("")
# Prompt
inpaint_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe what you want to generate in the masked area...",
lines=2
)
# Right column - Settings and Output
with gr.Column(scale=1):
# Settings
with gr.Accordion("Generation Settings", open=True):
conditioning_type = gr.Radio(
choices=["canny", "depth"],
value="canny",
label="ControlNet Mode"
)
conditioning_scale = gr.Slider(
minimum=0.05,
maximum=1.0,
value=0.7,
step=0.05,
label="ControlNet Strength"
)
feather_radius = gr.Slider(
minimum=0,
maximum=20,
value=8,
step=1,
label="Feather Radius (px)"
)
with gr.Accordion("Advanced Settings", open=False):
inpaint_guidance = gr.Slider(
minimum=5.0,
maximum=15.0,
value=7.5,
step=0.5,
label="Guidance Scale"
)
inpaint_steps = gr.Slider(
minimum=15,
maximum=50,
value=25,
step=5,
label="Inference Steps"
)
# Generate button
inpaint_btn = gr.Button(
"Generate Inpainting",
variant="primary",
elem_classes=["primary-button"]
)
# Processing time reminder
gr.Markdown(
"""
<div style="background: linear-gradient(135deg, #fff8e1 0%, #ffecb3 100%);
border-left: 4px solid #ffa000;
padding: 12px 16px;
border-radius: 8px;
margin: 12px 0;">
<p style="margin: 0; color: #5d4037; font-size: 14px;">
⏳ <strong>Please be patient!</strong> Inpainting typically takes <strong>5-7 minutes</strong>
depending on GPU availability and image complexity.
Please don't refresh the page while processing.
</p>
</div>
<div style="background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%);
border-left: 4px solid #1976d2;
padding: 12px 16px;
border-radius: 8px;
margin: 12px 0;">
<p style="margin: 0; color: #0d47a1; font-size: 14px;">
🔄 <strong>Want to make more changes?</strong> After each generation, please
<strong>re-upload your image</strong> and draw a new mask if you want to apply additional edits.
</p>
</div>
"""
)
# Status
inpaint_status = gr.Textbox(
label="Status",
value="Ready for inpainting",
interactive=False
)
# Output row
with gr.Row():
with gr.Column(scale=1):
inpaint_result = gr.Image(
label="Result",
type="pil",
height=400
)
with gr.Column(scale=1):
# Control image (structure guidance visualization)
inpaint_control = gr.Image(
label="Control Image (Structure Guidance)",
type="pil",
height=400
)
# Event handlers
inpaint_template.change(
fn=self.apply_inpainting_template,
inputs=[inpaint_template, inpaint_prompt],
outputs=[inpaint_prompt, conditioning_scale, feather_radius, conditioning_type]
)
inpaint_template.change(
fn=lambda x: self._get_template_tips(x),
inputs=[inpaint_template],
outputs=[template_tips]
)
# Copy uploaded image to mask editor
inpaint_image.change(
fn=lambda x: x,
inputs=[inpaint_image],
outputs=[mask_editor]
)
inpaint_btn.click(
fn=self.inpainting_handler,
inputs=[
inpaint_image,
mask_editor,
inpaint_prompt,
inpaint_template,
conditioning_type,
conditioning_scale,
feather_radius,
inpaint_guidance,
inpaint_steps
],
outputs=[
inpaint_result,
inpaint_control,
inpaint_status
]
)
return tab
def _get_template_tips(self, display_name: str) -> str:
"""Get usage tips for selected template."""
if not display_name:
return ""
template_key = self.inpainting_template_manager.get_template_key_from_display(display_name)
if not template_key:
return ""
tips = self.inpainting_template_manager.get_usage_tips(template_key)
if tips:
return "**Tips:**\n" + "\n".join(f"- {tip}" for tip in tips)
return "" |