File size: 41,827 Bytes
ca80d1d
 
7d583e3
ca80d1d
7d583e3
ca80d1d
 
 
 
 
 
 
 
 
7d583e3
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
7d583e3
 
 
 
 
 
 
 
 
 
 
ca80d1d
 
 
 
7d583e3
ca80d1d
7d583e3
ca80d1d
7d583e3
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94367e1
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcac4bd
 
 
 
 
 
a3f68be
 
 
ca80d1d
b323ef8
 
 
ca80d1d
 
 
 
 
 
 
7d583e3
ca80d1d
 
 
7d583e3
 
ca80d1d
7d583e3
 
ca80d1d
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca80d1d
7d583e3
 
 
 
 
 
 
 
ca80d1d
7d583e3
 
 
 
 
 
ca80d1d
7d583e3
 
 
 
 
 
 
ca80d1d
7d583e3
 
 
 
 
 
 
ca80d1d
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca80d1d
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca80d1d
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca80d1d
 
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca80d1d
7d583e3
 
 
 
ca80d1d
7d583e3
 
 
ca80d1d
 
7d583e3
 
 
 
 
 
 
 
 
 
ca80d1d
7d583e3
ca80d1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f68be
 
fcac4bd
 
 
 
 
 
 
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c40071d
7d583e3
 
c40071d
 
 
 
 
 
 
 
 
 
 
 
 
7d583e3
c40071d
 
7d583e3
c40071d
7d583e3
 
 
 
 
 
 
 
ba54a64
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f31372
7d583e3
 
4f31372
7d583e3
 
 
 
4f31372
7d583e3
 
 
 
 
4f31372
7d583e3
4f31372
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b10ca
4f31372
 
7d583e3
 
 
 
 
 
 
 
 
 
4f31372
7d583e3
 
 
 
4f31372
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c40071d
 
 
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba54a64
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59d17e6
 
 
 
 
 
 
 
 
 
 
 
 
 
f66b3c8
 
 
 
 
 
 
 
 
 
59d17e6
 
 
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f31372
 
 
 
 
 
7d583e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcac4bd
7d583e3
 
 
d878608
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
import logging
import time
import traceback
from pathlib import Path
from typing import Optional, Tuple, Dict, Any, List
from PIL import Image
import numpy as np
import cv2
import gradio as gr
import spaces

from scene_weaver_core import SceneWeaverCore
from css_styles import CSSStyles
from scene_templates import SceneTemplateManager
from inpainting_templates import InpaintingTemplateManager

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s [%(name)s] %(levelname)s: %(message)s',
    datefmt='%H:%M:%S'
)


class UIManager:
    """
    Gradio UI Manager with support for background generation and inpainting.

    Provides a professional interface with mode switching, template selection,
    and advanced parameter controls.

    Attributes:
        sceneweaver: SceneWeaverCore instance
        template_manager: Scene template manager
        inpainting_template_manager: Inpainting template manager
    """

    def __init__(self):
        self.sceneweaver = SceneWeaverCore()
        self.template_manager = SceneTemplateManager()
        self.inpainting_template_manager = InpaintingTemplateManager()
        self.generation_history = []
        self.inpainting_history = []
        self._preview_sensitivity = 0.5
        self._current_mode = "background"  # "background" or "inpainting"

    def apply_template(self, display_name: str, current_negative: str) -> Tuple[str, str, float]:
        """
        Apply a scene template to the prompt fields.

        Args:
            display_name: The display name from dropdown (e.g., "🏢 Modern Office")
            current_negative: Current negative prompt value

        Returns:
            Tuple of (prompt, negative_prompt, guidance_scale)
        """
        if not display_name:
            return "", current_negative, 7.5

        # Convert display name to template key
        template_key = self.template_manager.get_template_key_from_display(display_name)
        if not template_key:
            return "", current_negative, 7.5

        template = self.template_manager.get_template(template_key)
        if template:
            prompt = template.prompt
            negative = self.template_manager.get_negative_prompt_for_template(
                template_key, current_negative
            )
            guidance = template.guidance_scale
            return prompt, negative, guidance

        return "", current_negative, 7.5

    def quick_preview(
        self,
        uploaded_image: Optional[Image.Image],
        sensitivity: float = 0.5
    ) -> Optional[Image.Image]:
        """
        Generate quick foreground preview using lightweight traditional methods.

        Args:
            uploaded_image: Uploaded PIL Image
            sensitivity: Detection sensitivity (0.0 - 1.0)

        Returns:
            Preview image with colored overlay or None
        """
        if uploaded_image is None:
            return None

        try:
            logger.info(f"Generating quick preview (sensitivity={sensitivity:.2f})")

            img_array = np.array(uploaded_image.convert('RGB'))
            height, width = img_array.shape[:2]

            max_preview_size = 512
            if max(width, height) > max_preview_size:
                scale = max_preview_size / max(width, height)
                new_w = int(width * scale)
                new_h = int(height * scale)
                img_array = cv2.resize(img_array, (new_w, new_h), interpolation=cv2.INTER_AREA)
                height, width = new_h, new_w

            gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
            blurred = cv2.GaussianBlur(gray, (5, 5), 0)

            low_threshold = int(30 + (1 - sensitivity) * 50)
            high_threshold = int(100 + (1 - sensitivity) * 100)
            edges = cv2.Canny(blurred, low_threshold, high_threshold)

            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
            dilated = cv2.dilate(edges, kernel, iterations=2)

            contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

            mask = np.zeros((height, width), dtype=np.uint8)

            if contours:
                sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)
                min_area = (width * height) * 0.01 * (1 - sensitivity)
                for contour in sorted_contours:
                    if cv2.contourArea(contour) > min_area:
                        cv2.fillPoly(mask, [contour], 255)

            kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11, 11))
            mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel_close)

            overlay = img_array.copy().astype(np.float32)

            fg_mask = mask > 127
            overlay[fg_mask] = overlay[fg_mask] * 0.5 + np.array([0, 255, 0]) * 0.5

            bg_mask = mask <= 127
            overlay[bg_mask] = overlay[bg_mask] * 0.5 + np.array([255, 0, 0]) * 0.5

            overlay = np.clip(overlay, 0, 255).astype(np.uint8)

            original_size = uploaded_image.size
            preview_image = Image.fromarray(overlay)
            if preview_image.size != original_size:
                preview_image = preview_image.resize(original_size, Image.LANCZOS)

            logger.info("Quick preview generated successfully")
            return preview_image

        except Exception as e:
            logger.error(f"Quick preview failed: {e}")
            return None

    def _save_result(self, combined_image: Image.Image, prompt: str):
        """Save result with memory-conscious history management"""
        if not combined_image:
            return

        output_dir = Path("outputs")
        output_dir.mkdir(exist_ok=True)

        combined_image.save(output_dir / "latest_combined.png")

        self.generation_history.append({
            "prompt": prompt,
            "timestamp": time.time()
        })

        max_history = self.sceneweaver.max_history
        if len(self.generation_history) > max_history:
            self.generation_history = self.generation_history[-max_history:]

    @spaces.GPU(duration=240)
    def generate_handler(
        self,
        uploaded_image: Optional[Image.Image],
        prompt: str,
        combination_mode: str,
        focus_mode: str,
        negative_prompt: str,
        steps: int,
        guidance: float,
        progress=gr.Progress()
    ):
        """Enhanced generation handler with memory management and ZeroGPU support"""

        if uploaded_image is None:
            return None, None, None, "Please upload an image to get started!", gr.update(visible=False)

        if not prompt.strip():
            return None, None, None, "Please describe the background scene you'd like!", gr.update(visible=False)

        try:
            if not self.sceneweaver.is_initialized:
                progress(0.05, desc="Loading AI models (first time may take 2-3 minutes)...")

                def init_progress(msg, pct):
                    if pct < 30:
                        desc = "Loading image analysis models..."
                    elif pct < 60:
                        desc = "Loading Stable Diffusion XL..."
                    elif pct < 90:
                        desc = "Applying memory optimizations..."
                    else:
                        desc = "Almost ready..."
                    progress(0.05 + (pct/100) * 0.2, desc=desc)

                self.sceneweaver.load_models(progress_callback=init_progress)

            def gen_progress(msg, pct):
                if pct < 20:
                    desc = "Analyzing your image..."
                elif pct < 50:
                    desc = "Generating background scene..."
                elif pct < 80:
                    desc = "Blending foreground and background..."
                elif pct < 95:
                    desc = "Applying final touches..."
                else:
                    desc = "Complete!"
                progress(0.25 + (pct/100) * 0.75, desc=desc)

            result = self.sceneweaver.generate_and_combine(
                original_image=uploaded_image,
                prompt=prompt,
                combination_mode=combination_mode,
                focus_mode=focus_mode,
                negative_prompt=negative_prompt,
                num_inference_steps=int(steps),
                guidance_scale=float(guidance),
                progress_callback=gen_progress
            )

            if result["success"]:
                combined = result["combined_image"]
                generated = result["generated_scene"]
                original = result["original_image"]

                self._save_result(combined, prompt)

                status_msg = "Image created successfully!"

                return combined, generated, original, status_msg, gr.update(visible=True)
            else:
                error_msg = result.get("error", "Something went wrong")
                return None, None, None, f"Error: {error_msg}", gr.update(visible=False)

        except Exception as e:
            error_traceback = traceback.format_exc()
            logger.error(f"Generation handler error: {str(e)}")
            logger.error(f"Traceback:\n{error_traceback}")
            return None, None, None, f"Error: {str(e)}", gr.update(visible=False)

    def create_interface(self):
        """Create professional user interface"""

        self._css = CSSStyles.get_main_css()

        # Check Gradio version for API compatibility
        self._gradio_version = gr.__version__
        self._gradio_major = int(self._gradio_version.split('.')[0])

        # Compatible with Gradio 4.44.0+
        # Use minimal constructor arguments for maximum compatibility
        with gr.Blocks() as interface:

            # Inject CSS (compatible with all Gradio versions)
            gr.HTML(f"<style>{self._css}</style>")

            # Header
            gr.HTML("""
            <div class="main-header">
                <h1 class="main-title">
                    <span class="title-emoji">🎨</span>
                    SceneWeaver
                </h1>
                <p class="main-subtitle">AI-powered background generation and inpainting with professional edge processing</p>
            </div>
            """)

            # Main Tabs for Mode Selection
            with gr.Tabs(elem_id="main-mode-tabs") as main_tabs:

                # Background Generation Tab
                with gr.Tab("Background Generation", elem_id="bg-gen-tab"):

                    with gr.Row():
                        # Left Column - Input controls
                        with gr.Column(scale=1, min_width=350, elem_classes=["feature-card"]):
                            gr.HTML("""
                            <div class="card-content">
                                <h3 class="card-title">
                                    <span class="section-emoji">📸</span>
                                    Upload & Generate
                                </h3>
                            </div>
                            """)

                            uploaded_image = gr.Image(
                                label="Upload Your Image",
                                type="pil",
                                height=280,
                                elem_classes=["input-field"]
                            )

                            # Scene Template Selector (without Accordion to fix dropdown positioning in Gradio 5.x)
                            template_dropdown = gr.Dropdown(
                                label="Scene Templates",
                                choices=[""] + self.template_manager.get_template_choices_sorted(),
                                value="",
                                info="24 curated scenes sorted A-Z (optional)",
                                elem_classes=["template-dropdown"]
                            )

                            prompt_input = gr.Textbox(
                                label="Background Scene Description",
                                placeholder="Select a template above or describe your own scene...",
                                lines=3,
                                elem_classes=["input-field"]
                            )

                            combination_mode = gr.Dropdown(
                                label="Composition Mode",
                                choices=["center", "left_half", "right_half", "full"],
                                value="center",
                                info="center=Smart Center | left_half=Left Half | right_half=Right Half | full=Full Image",
                                elem_classes=["input-field"]
                            )

                            focus_mode = gr.Dropdown(
                                label="Focus Mode",
                                choices=["person", "scene"],
                                value="person",
                                info="person=Tight Crop | scene=Include Surrounding Objects",
                                elem_classes=["input-field"]
                            )

                            with gr.Accordion("Advanced Options", open=False):
                                negative_prompt = gr.Textbox(
                                    label="Negative Prompt",
                                    value="blurry, low quality, distorted, people, characters",
                                    lines=2,
                                    elem_classes=["input-field"]
                                )

                                steps_slider = gr.Slider(
                                    label="Quality Steps",
                                    minimum=15,
                                    maximum=50,
                                    value=25,
                                    step=5,
                                    elem_classes=["input-field"]
                                )

                                guidance_slider = gr.Slider(
                                    label="Guidance Scale",
                                    minimum=5.0,
                                    maximum=15.0,
                                    value=7.5,
                                    step=0.5,
                                    elem_classes=["input-field"]
                                )

                            generate_btn = gr.Button(
                                "Generate Background",
                                variant="primary",
                                size="lg",
                                elem_classes=["primary-button"]
                            )

                        # Right Column - Results display
                        with gr.Column(scale=2, elem_classes=["feature-card"], elem_id="results-gallery-centered"):
                            gr.HTML("""
                            <div class="card-content">
                                <h3 class="card-title">
                                    <span class="section-emoji">🎭</span>
                                    Results Gallery
                                </h3>
                            </div>
                            """)

                            # Loading notice
                            gr.HTML("""
                            <div class="loading-notice">
                                <span class="loading-notice-icon">⏱️</span>
                                <span class="loading-notice-text">
                                    <strong>First-time users:</strong> Initial model loading takes 1-2 minutes.
                                    Subsequent generations are much faster (~30s).
                                </span>
                            </div>
                            """)

                            # Quick start guide
                            gr.HTML("""
                            <details class="user-guidance-panel">
                                <summary class="guidance-summary">
                                    <span class="emoji-enhanced">💡</span>
                                    Quick Start Guide
                                </summary>
                                <div class="guidance-content">
                                    <p><strong>Step 1:</strong> Upload any image with a clear subject</p>
                                    <p><strong>Step 2:</strong> Describe or Choose your desired background scene</p>
                                    <p><strong>Step 3:</strong> Choose composition mode (center works best)</p>
                                    <p><strong>Step 4:</strong> Click Generate and wait for the magic!</p>
                                    <p><strong>Tip:</strong> For dark clothing, ensure good lighting in original photo.</p>
                                </div>
                            </details>
                            """)

                            with gr.Tabs():
                                with gr.TabItem("Final Result"):
                                    combined_output = gr.Image(
                                        label="Your Generated Image",
                                        elem_classes=["result-gallery"],
                                        show_label=False
                                    )
                                with gr.TabItem("Background"):
                                    generated_output = gr.Image(
                                        label="Generated Background",
                                        elem_classes=["result-gallery"],
                                        show_label=False
                                    )
                                with gr.TabItem("Original"):
                                    original_output = gr.Image(
                                        label="Processed Original",
                                        elem_classes=["result-gallery"],
                                        show_label=False
                                    )

                            status_output = gr.Textbox(
                                label="Status",
                                value="Ready to create! Upload an image and describe your vision.",
                                interactive=False,
                                elem_classes=["status-panel", "status-ready"]
                            )

                            with gr.Row():
                                download_btn = gr.DownloadButton(
                                    "Download Result",
                                    value=None,
                                    visible=False,
                                    elem_classes=["secondary-button"]
                                )
                                clear_btn = gr.Button(
                                    "Clear All",
                                    elem_classes=["secondary-button"]
                                )
                                memory_btn = gr.Button(
                                    "Clean Memory",
                                    elem_classes=["secondary-button"]
                                )

                    # Event handlers for Background Generation Tab
                    # Template selection handler
                    template_dropdown.change(
                        fn=self.apply_template,
                        inputs=[template_dropdown, negative_prompt],
                        outputs=[prompt_input, negative_prompt, guidance_slider]
                    )

                    generate_btn.click(
                        fn=self.generate_handler,
                        inputs=[
                            uploaded_image,
                            prompt_input,
                            combination_mode,
                            focus_mode,
                            negative_prompt,
                            steps_slider,
                            guidance_slider
                        ],
                        outputs=[
                            combined_output,
                            generated_output,
                            original_output,
                            status_output,
                            download_btn
                        ]
                    )

                    clear_btn.click(
                        fn=lambda: (None, None, None, "Ready to create!", gr.update(visible=False)),
                        outputs=[combined_output, generated_output, original_output, status_output, download_btn]
                    )

                    memory_btn.click(
                        fn=lambda: self.sceneweaver._ultra_memory_cleanup() or "Memory cleaned!",
                        outputs=[status_output]
                    )

                    combined_output.change(
                        fn=lambda img: gr.update(value="outputs/latest_combined.png", visible=True) if (img is not None) else gr.update(visible=False),
                        inputs=[combined_output],
                        outputs=[download_btn]
                    )

                # End of Background Generation Tab

                # Inpainting Tab
                self.create_inpainting_tab()

            # Footer with tech credits (outside tabs)
            gr.HTML("""
            <div class="app-footer">
                <div class="footer-powered">
                    <p class="footer-powered-title">Powered By</p>
                    <div class="footer-tech-grid">
                        <span class="footer-tech-item">Stable Diffusion XL</span>
                        <span class="footer-tech-item">OpenCLIP</span>
                        <span class="footer-tech-item">BiRefNet</span>
                        <span class="footer-tech-item">rembg</span>
                        <span class="footer-tech-item">PyTorch</span>
                        <span class="footer-tech-item">Gradio</span>
                    </div>
                </div>
                <div class="footer-divider"></div>
                <p class="footer-copyright">
                    SceneWeaver &copy; 2025 &nbsp;|&nbsp;
                    Built with <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0" target="_blank">SDXL</a>
                    and <a href="https://github.com/mlfoundations/open_clip" target="_blank">OpenCLIP</a>
                </p>
            </div>
            """)

        return interface

    def launch(self, share: bool = True, debug: bool = False):
        """Launch the UI interface"""
        interface = self.create_interface()

        # Launch kwargs compatible with Gradio 4.44.0+
        # Keep minimal for maximum compatibility
        launch_kwargs = {
            "share": share,
            "debug": debug,
            "show_error": True,
            "quiet": False
        }

        return interface.launch(**launch_kwargs)

    # INPAINTING UI METHODS
    def apply_inpainting_template(
        self,
        display_name: str,
        current_prompt: str
    ) -> Tuple[str, float, int, str]:
        """
        Apply an inpainting template to the UI fields.

        Parameters
        ----------
        display_name : str
            Template display name from dropdown
        current_prompt : str
            Current prompt content

        Returns
        -------
        tuple
            (prompt, conditioning_scale, feather_radius, conditioning_type)
        """
        if not display_name:
            return current_prompt, 0.7, 8, "canny"

        template_key = self.inpainting_template_manager.get_template_key_from_display(display_name)
        if not template_key:
            return current_prompt, 0.7, 8, "canny"

        template = self.inpainting_template_manager.get_template(template_key)
        if template:
            params = self.inpainting_template_manager.get_parameters_for_template(template_key)
            return (
                current_prompt,
                params.get('controlnet_conditioning_scale', 0.7),
                params.get('feather_radius', 8),
                params.get('preferred_conditioning', 'canny')
            )

        return current_prompt, 0.7, 8, "canny"

    def extract_mask_from_editor(self, editor_output: Dict[str, Any]) -> Optional[Image.Image]:
        """
        Extract mask from Gradio ImageEditor output.

        Handles different Gradio versions' output formats.

        Parameters
        ----------
        editor_output : dict
            Output from gr.ImageEditor component

        Returns
        -------
        PIL.Image or None
            Extracted mask as grayscale image
        """
        if editor_output is None:
            return None

        try:
            # Gradio 5.x format
            if isinstance(editor_output, dict):
                # Check for 'layers' key (Gradio 5.x ImageEditor)
                if 'layers' in editor_output and editor_output['layers']:
                    # Get the first layer as mask
                    layer = editor_output['layers'][0]
                    if isinstance(layer, np.ndarray):
                        mask_array = layer
                    elif isinstance(layer, Image.Image):
                        mask_array = np.array(layer)
                    else:
                        return None

                # Check for 'composite' key
                elif 'composite' in editor_output:
                    composite = editor_output['composite']
                    if isinstance(composite, np.ndarray):
                        mask_array = composite
                    elif isinstance(composite, Image.Image):
                        mask_array = np.array(composite)
                    else:
                        return None
                else:
                    return None

            elif isinstance(editor_output, np.ndarray):
                mask_array = editor_output
            elif isinstance(editor_output, Image.Image):
                mask_array = np.array(editor_output)
            else:
                logger.warning(f"Unexpected editor output type: {type(editor_output)}")
                return None

            # Convert to grayscale mask
            if len(mask_array.shape) == 3:
                if mask_array.shape[2] == 4:
                    # RGBA format - extract white brush strokes from RGB channels
                    # White brush strokes have high RGB values AND high alpha
                    rgb_part = mask_array[:, :, :3]
                    alpha_part = mask_array[:, :, 3]

                    # Convert RGB to grayscale to detect white areas
                    gray = cv2.cvtColor(rgb_part, cv2.COLOR_RGB2GRAY)

                    # Combine: white areas (high gray value) with opacity (high alpha)
                    # This captures white brush strokes
                    mask_gray = np.minimum(gray, alpha_part)
                elif mask_array.shape[2] == 3:
                    # RGB - convert to grayscale (white areas become white in mask)
                    mask_gray = cv2.cvtColor(mask_array, cv2.COLOR_RGB2GRAY)
                else:
                    mask_gray = mask_array[:, :, 0]
            else:
                # Already grayscale
                mask_gray = mask_array

            return Image.fromarray(mask_gray.astype(np.uint8), mode='L')

        except Exception as e:
            logger.error(f"Failed to extract mask from editor: {e}")
            return None

    @spaces.GPU(duration=420)
    def inpainting_handler(
        self,
        image: Optional[Image.Image],
        mask_editor: Dict[str, Any],
        prompt: str,
        template_dropdown: str,
        conditioning_type: str,
        conditioning_scale: float,
        feather_radius: int,
        guidance_scale: float,
        num_steps: int,
        progress: gr.Progress = gr.Progress()
    ) -> Tuple[Optional[Image.Image], Optional[Image.Image], Optional[Image.Image], str]:
        """
        Handle inpainting generation request.

        Parameters
        ----------
        image : PIL.Image
            Original image to inpaint
        mask_editor : dict
            Mask editor output
        prompt : str
            Text description of desired content
        template_dropdown : str
            Selected template (optional)
        conditioning_type : str
            ControlNet conditioning type
        conditioning_scale : float
            ControlNet influence strength
        feather_radius : int
            Mask feathering radius
        guidance_scale : float
            Guidance scale for generation
        num_steps : int
            Number of inference steps
        progress : gr.Progress
            Progress callback

        Returns
        -------
        tuple
            (result_image, control_image, status_message)
        """
        if image is None:
            return None, None, "⚠️ Please upload an image first"

        # Extract mask
        mask = self.extract_mask_from_editor(mask_editor)
        if mask is None:
            return None, None, "⚠️ Please draw a mask on the image"

        # Validate mask
        mask_array = np.array(mask)
        coverage = np.count_nonzero(mask_array > 127) / mask_array.size
        if coverage < 0.01:
            return None, None, "⚠️ Mask too small - please select a larger area"
        if coverage > 0.95:
            return None, None, "⚠️ Mask too large - consider using background generation instead"

        def progress_callback(msg: str, pct: int):
            progress(pct / 100, desc=msg)

        try:
            start_time = time.time()

            # Get template key if selected
            template_key = None
            if template_dropdown:
                template_key = self.inpainting_template_manager.get_template_key_from_display(
                    template_dropdown
                )

            # Execute inpainting through SceneWeaverCore facade
            result = self.sceneweaver.execute_inpainting(
                image=image,
                mask=mask,
                prompt=prompt,
                preview_only=False,
                template_key=template_key,
                conditioning_type=conditioning_type,
                controlnet_conditioning_scale=conditioning_scale,
                feather_radius=feather_radius,
                guidance_scale=guidance_scale,
                num_inference_steps=num_steps,
                progress_callback=progress_callback
            )

            elapsed = time.time() - start_time

            if result.get('success'):
                # Store in history
                self.inpainting_history.append({
                    'result': result.get('combined_image'),
                    'prompt': prompt,
                    'time': elapsed
                })
                if len(self.inpainting_history) > 3:
                    self.inpainting_history.pop(0)

                quality_score = result.get('quality_score', 0)

                # Clean, simple status message
                status = f"✅ Inpainting complete in {elapsed:.1f}s"
                if quality_score > 0:
                    status += f" | Quality: {quality_score:.0f}/100"

                return (
                    result.get('combined_image'),
                    result.get('control_image'),
                    status
                )
            else:
                error_msg = result.get('error', 'Unknown error')
                return None, None, f"❌ Inpainting failed: {error_msg}"

        except Exception as e:
            logger.error(f"Inpainting handler error: {e}")
            logger.error(traceback.format_exc())
            return None, None, f"❌ Error: {str(e)}"

    def create_inpainting_tab(self) -> gr.Tab:
        """
        Create the inpainting tab UI.

        Returns
        -------
        gr.Tab
            Configured inpainting tab component
        """
        with gr.Tab("Inpainting", elem_id="inpainting-tab") as tab:
            gr.HTML("""
            <div class="inpainting-header">
                <h3 style="display: flex; align-items: center; gap: 10px; margin-bottom: 8px;">
                    ControlNet Inpainting
                    <span style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
                                 color: white;
                                 padding: 3px 10px;
                                 border-radius: 12px;
                                 font-size: 0.65em;
                                 font-weight: 700;
                                 letter-spacing: 0.5px;
                                 box-shadow: 0 2px 4px rgba(102, 126, 234, 0.3);">
                        BETA
                    </span>
                </h3>
                <p style="color: #666; margin-bottom: 12px;">Draw a mask to select the area you want to regenerate</p>
                <div style="background: linear-gradient(to right, #FFF4E6, #FFE8CC);
                            border-left: 4px solid #FF9500;
                            padding: 12px 15px;
                            border-radius: 6px;
                            margin-top: 10px;
                            box-shadow: 0 2px 4px rgba(255, 149, 0, 0.1);">
                    <p style="color: #8B4513; font-size: 0.9em; margin: 0; line-height: 1.5;">
                        <strong>⚠️ Beta Feature - Continuously Optimizing</strong><br>
                        Results may vary depending on complexity. Use templates and detailed prompts for best results.
                        Advanced features (like Add Accessories) may require multiple attempts.
                    </p>
                </div>
            </div>
            """)

            with gr.Row():
                # Left column - Input
                with gr.Column(scale=1):
                    # Image upload
                    inpaint_image = gr.Image(
                        label="Upload Image",
                        type="pil",
                        height=300
                    )

                    # Mask editor
                    mask_editor = gr.ImageEditor(
                        label="Draw Mask (white = area to inpaint)",
                        type="pil",
                        height=300,
                        brush=gr.Brush(colors=["#FFFFFF"], default_size=20),
                        eraser=gr.Eraser(default_size=20),
                        layers=True,
                        sources=["upload"],
                        image_mode="RGBA"
                    )

                    # Template selection
                    with gr.Accordion("Inpainting Templates", open=False):
                        inpaint_template = gr.Dropdown(
                            choices=[""] + self.inpainting_template_manager.get_template_choices_sorted(),
                            value="",
                            label="Select Template",
                            elem_classes=["template-dropdown"]
                        )
                        template_tips = gr.Markdown("")

                    # Prompt
                    inpaint_prompt = gr.Textbox(
                        label="Prompt",
                        placeholder="Describe what you want to generate in the masked area...",
                        lines=2
                    )

                # Right column - Settings and Output
                with gr.Column(scale=1):
                    # Settings
                    with gr.Accordion("Generation Settings", open=True):
                        conditioning_type = gr.Radio(
                            choices=["canny", "depth"],
                            value="canny",
                            label="ControlNet Mode"
                        )

                        conditioning_scale = gr.Slider(
                            minimum=0.05,
                            maximum=1.0,
                            value=0.7,
                            step=0.05,
                            label="ControlNet Strength"
                        )

                        feather_radius = gr.Slider(
                            minimum=0,
                            maximum=20,
                            value=8,
                            step=1,
                            label="Feather Radius (px)"
                        )

                    with gr.Accordion("Advanced Settings", open=False):
                        inpaint_guidance = gr.Slider(
                            minimum=5.0,
                            maximum=15.0,
                            value=7.5,
                            step=0.5,
                            label="Guidance Scale"
                        )

                        inpaint_steps = gr.Slider(
                            minimum=15,
                            maximum=50,
                            value=25,
                            step=5,
                            label="Inference Steps"
                        )

                    # Generate button
                    inpaint_btn = gr.Button(
                        "Generate Inpainting",
                        variant="primary",
                        elem_classes=["primary-button"]
                    )

                    # Processing time reminder
                    gr.Markdown(
                        """
                        <div style="background: linear-gradient(135deg, #fff8e1 0%, #ffecb3 100%);
                                    border-left: 4px solid #ffa000;
                                    padding: 12px 16px;
                                    border-radius: 8px;
                                    margin: 12px 0;">
                            <p style="margin: 0; color: #5d4037; font-size: 14px;">
                                ⏳ <strong>Please be patient!</strong> Inpainting typically takes <strong>5-7 minutes</strong>
                                depending on GPU availability and image complexity.
                                Please don't refresh the page while processing.
                            </p>
                        </div>
                        <div style="background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%);
                                    border-left: 4px solid #1976d2;
                                    padding: 12px 16px;
                                    border-radius: 8px;
                                    margin: 12px 0;">
                            <p style="margin: 0; color: #0d47a1; font-size: 14px;">
                                🔄 <strong>Want to make more changes?</strong> After each generation, please
                                <strong>re-upload your image</strong> and draw a new mask if you want to apply additional edits.
                            </p>
                        </div>
                        """
                    )

                    # Status
                    inpaint_status = gr.Textbox(
                        label="Status",
                        value="Ready for inpainting",
                        interactive=False
                    )

            # Output row
            with gr.Row():
                with gr.Column(scale=1):
                    inpaint_result = gr.Image(
                        label="Result",
                        type="pil",
                        height=400
                    )

                with gr.Column(scale=1):
                    # Control image (structure guidance visualization)
                    inpaint_control = gr.Image(
                        label="Control Image (Structure Guidance)",
                        type="pil",
                        height=400
                    )

            # Event handlers
            inpaint_template.change(
                fn=self.apply_inpainting_template,
                inputs=[inpaint_template, inpaint_prompt],
                outputs=[inpaint_prompt, conditioning_scale, feather_radius, conditioning_type]
            )

            inpaint_template.change(
                fn=lambda x: self._get_template_tips(x),
                inputs=[inpaint_template],
                outputs=[template_tips]
            )

            # Copy uploaded image to mask editor
            inpaint_image.change(
                fn=lambda x: x,
                inputs=[inpaint_image],
                outputs=[mask_editor]
            )

            inpaint_btn.click(
                fn=self.inpainting_handler,
                inputs=[
                    inpaint_image,
                    mask_editor,
                    inpaint_prompt,
                    inpaint_template,
                    conditioning_type,
                    conditioning_scale,
                    feather_radius,
                    inpaint_guidance,
                    inpaint_steps
                ],
                outputs=[
                    inpaint_result,
                    inpaint_control,
                    inpaint_status
                ]
            )

        return tab

    def _get_template_tips(self, display_name: str) -> str:
        """Get usage tips for selected template."""
        if not display_name:
            return ""

        template_key = self.inpainting_template_manager.get_template_key_from_display(display_name)
        if not template_key:
            return ""

        tips = self.inpainting_template_manager.get_usage_tips(template_key)
        if tips:
            return "**Tips:**\n" + "\n".join(f"- {tip}" for tip in tips)
        return ""