SceneWeaver / model_manager.py
DawnC's picture
Upload 10 files
ca80d1d verified
raw
history blame
9.02 kB
import logging
import gc
import time
from typing import Dict, Any, Optional, Callable
from dataclasses import dataclass, field
from threading import Lock
import torch
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
@dataclass
class ModelInfo:
"""Information about a registered model."""
name: str
loader: Callable[[], Any]
is_critical: bool = False # Critical models are not unloaded under memory pressure
estimated_memory_gb: float = 0.0
is_loaded: bool = False
last_used: float = 0.0
model_instance: Any = None
class ModelManager:
"""
Singleton model manager for unified model lifecycle management.
Handles lazy loading, caching, and intelligent memory management.
"""
_instance = None
_lock = Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized:
return
self._models: Dict[str, ModelInfo] = {}
self._memory_threshold = 0.80 # Trigger cleanup at 80% GPU memory usage
self._device = self._detect_device()
logger.info(f"🔧 ModelManager initialized on {self._device}")
self._initialized = True
def _detect_device(self) -> str:
"""Detect best available device."""
if torch.cuda.is_available():
return "cuda"
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
return "mps"
return "cpu"
def register_model(
self,
name: str,
loader: Callable[[], Any],
is_critical: bool = False,
estimated_memory_gb: float = 0.0
):
"""
Register a model for managed loading.
Args:
name: Unique model identifier
loader: Callable that returns the loaded model
is_critical: If True, model won't be unloaded under memory pressure
estimated_memory_gb: Estimated GPU memory usage in GB
"""
if name in self._models:
logger.warning(f"⚠️ Model '{name}' already registered, updating")
self._models[name] = ModelInfo(
name=name,
loader=loader,
is_critical=is_critical,
estimated_memory_gb=estimated_memory_gb,
is_loaded=False,
last_used=0.0,
model_instance=None
)
logger.info(f"📝 Registered model: {name} (critical={is_critical}, ~{estimated_memory_gb:.1f}GB)")
def load_model(self, name: str) -> Any:
"""
Load a model by name. Returns cached instance if already loaded.
Args:
name: Model identifier
Returns:
Loaded model instance
Raises:
KeyError: If model not registered
RuntimeError: If loading fails
"""
if name not in self._models:
raise KeyError(f"Model '{name}' not registered")
model_info = self._models[name]
# Return cached instance
if model_info.is_loaded and model_info.model_instance is not None:
model_info.last_used = time.time()
logger.debug(f"📦 Using cached model: {name}")
return model_info.model_instance
# Check memory pressure before loading
self.check_memory_pressure()
# Load the model
try:
logger.info(f"📥 Loading model: {name}")
start_time = time.time()
model_instance = model_info.loader()
model_info.model_instance = model_instance
model_info.is_loaded = True
model_info.last_used = time.time()
load_time = time.time() - start_time
logger.info(f"✅ Model '{name}' loaded in {load_time:.1f}s")
return model_instance
except Exception as e:
logger.error(f"❌ Failed to load model '{name}': {e}")
raise RuntimeError(f"Model loading failed: {e}")
def unload_model(self, name: str):
"""
Unload a specific model to free memory.
Args:
name: Model identifier
"""
if name not in self._models:
return
model_info = self._models[name]
if not model_info.is_loaded:
return
try:
logger.info(f"🗑️ Unloading model: {name}")
# Delete model instance
if model_info.model_instance is not None:
del model_info.model_instance
model_info.model_instance = None
model_info.is_loaded = False
# Cleanup
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info(f"✅ Model '{name}' unloaded")
except Exception as e:
logger.error(f"❌ Error unloading model '{name}': {e}")
def check_memory_pressure(self) -> bool:
"""
Check GPU memory usage and unload least-used non-critical models if needed.
Returns:
True if cleanup was performed
"""
if not torch.cuda.is_available():
return False
allocated = torch.cuda.memory_allocated() / 1024**3
total = torch.cuda.get_device_properties(0).total_memory / 1024**3
usage_ratio = allocated / total
if usage_ratio < self._memory_threshold:
return False
logger.warning(f"⚠️ Memory pressure detected: {usage_ratio:.1%} used")
# Find non-critical models sorted by last used time
unloadable = [
(name, info) for name, info in self._models.items()
if info.is_loaded and not info.is_critical
]
unloadable.sort(key=lambda x: x[1].last_used)
# Unload oldest non-critical models
cleaned = False
for name, info in unloadable:
self.unload_model(name)
cleaned = True
# Re-check memory
new_ratio = torch.cuda.memory_allocated() / torch.cuda.get_device_properties(0).total_memory
if new_ratio < self._memory_threshold * 0.7: # Target 70% of threshold
break
return cleaned
def force_cleanup(self):
"""Force cleanup all non-critical models and clear caches."""
logger.info("🧹 Force cleanup initiated")
# Unload all non-critical models
for name, info in self._models.items():
if info.is_loaded and not info.is_critical:
self.unload_model(name)
# Aggressive garbage collection
for _ in range(5):
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
torch.cuda.synchronize()
logger.info("✅ Force cleanup completed")
def get_memory_status(self) -> Dict[str, Any]:
"""
Get detailed memory status.
Returns:
Dictionary with memory statistics
"""
status = {
"device": self._device,
"models": {},
"total_estimated_gb": 0.0
}
# Model status
for name, info in self._models.items():
status["models"][name] = {
"loaded": info.is_loaded,
"critical": info.is_critical,
"estimated_gb": info.estimated_memory_gb,
"last_used": info.last_used
}
if info.is_loaded:
status["total_estimated_gb"] += info.estimated_memory_gb
# GPU memory
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated() / 1024**3
total = torch.cuda.get_device_properties(0).total_memory / 1024**3
cached = torch.cuda.memory_reserved() / 1024**3
status["gpu"] = {
"allocated_gb": round(allocated, 2),
"total_gb": round(total, 2),
"cached_gb": round(cached, 2),
"free_gb": round(total - allocated, 2),
"usage_percent": round((allocated / total) * 100, 1)
}
return status
def get_loaded_models(self) -> list:
"""Get list of currently loaded model names."""
return [name for name, info in self._models.items() if info.is_loaded]
def is_model_loaded(self, name: str) -> bool:
"""Check if a specific model is loaded."""
if name not in self._models:
return False
return self._models[name].is_loaded
# Global singleton instance
_model_manager = None
def get_model_manager() -> ModelManager:
"""Get the global ModelManager singleton instance."""
global _model_manager
if _model_manager is None:
_model_manager = ModelManager()
return _model_manager