SceneWeaver / mask_generator.py
DawnC's picture
Upload 11 files
7d583e3 verified
raw
history blame
29.1 kB
import cv2
import numpy as np
import traceback
from PIL import Image, ImageFilter, ImageDraw
import logging
from typing import Optional, Tuple
from scipy.ndimage import binary_erosion, binary_dilation
import io
import gc
import torch
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
from rembg import remove, new_session
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class MaskGenerator:
"""
Intelligent mask generation using deep learning models with traditional fallback.
Priority: BiRefNet > U²-Net (rembg) > Traditional gradient-based methods
"""
def __init__(self, max_image_size: int = 1024, device: str = "auto"):
self.max_image_size = max_image_size
self.device = self._setup_device(device)
# BiRefNet model (lazy loading)
self._birefnet_model = None
self._birefnet_transform = None
# Log initialization
logger.info(f"🎭 MaskGenerator initialized on {self.device}")
def _setup_device(self, device: str) -> str:
"""Setup computation device"""
if device == "auto":
if torch.cuda.is_available():
return "cuda"
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
return "mps"
return "cpu"
return device
def _load_birefnet_model(self) -> bool:
"""
Lazy load BiRefNet model for memory efficiency.
Returns True if model loaded successfully, False otherwise.
"""
if self._birefnet_model is not None:
return True
try:
logger.info("📥 Loading BiRefNet model (ZhengPeng7/BiRefNet)...")
# Load model with fp16 for memory efficiency on GPU
dtype = torch.float16 if self.device == "cuda" else torch.float32
self._birefnet_model = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet",
trust_remote_code=True,
torch_dtype=dtype
)
self._birefnet_model.to(self.device)
self._birefnet_model.eval()
# Define preprocessing transform
self._birefnet_transform = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
logger.info("✅ BiRefNet model loaded successfully")
return True
except Exception as e:
logger.error(f"❌ Failed to load BiRefNet: {e}")
self._birefnet_model = None
self._birefnet_transform = None
return False
def _unload_birefnet_model(self):
"""Unload BiRefNet model to free memory"""
if self._birefnet_model is not None:
del self._birefnet_model
self._birefnet_model = None
self._birefnet_transform = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
logger.info("🧹 BiRefNet model unloaded")
def apply_guided_filter(
self,
mask: np.ndarray,
guide_image: Image.Image,
radius: int = 8,
eps: float = 0.01
) -> np.ndarray:
"""
Apply guided filter to mask for edge-preserving smoothing.
Falls back to Gaussian blur if guided filter is not available.
Args:
mask: Input mask as numpy array (0-255)
guide_image: Original image to use as guide
radius: Filter radius (larger = more smoothing)
eps: Regularization parameter (smaller = more edge-preserving)
Returns:
Filtered mask as numpy array (0-255)
"""
try:
# Convert guide image to grayscale
guide_gray = np.array(guide_image.convert('L')).astype(np.float32) / 255.0
mask_float = mask.astype(np.float32) / 255.0
logger.info(f"🔧 Applying guided filter (radius={radius}, eps={eps})")
# Apply guided filter
filtered = cv2.ximgproc.guidedFilter(
guide=guide_gray,
src=mask_float,
radius=radius,
eps=eps
)
# Convert back to 0-255 range
result = (np.clip(filtered, 0, 1) * 255).astype(np.uint8)
logger.info("✅ Guided filter applied successfully")
return result
except Exception as e:
logger.error(f"❌ Guided filter failed: {e}, using original mask")
return mask
def try_birefnet_mask(self, original_image: Image.Image) -> Optional[Image.Image]:
"""
Generate foreground mask using BiRefNet model.
BiRefNet provides high-quality segmentation with clean edges.
Args:
original_image: Input PIL Image
Returns:
PIL Image (L mode) mask or None if failed
"""
try:
# Lazy load model
if not self._load_birefnet_model():
return None
logger.info("🤖 Starting BiRefNet foreground extraction...")
original_size = original_image.size
# Convert to RGB if needed
if original_image.mode != 'RGB':
image_rgb = original_image.convert('RGB')
else:
image_rgb = original_image
# Preprocess image
input_tensor = self._birefnet_transform(image_rgb).unsqueeze(0)
# Move to device with appropriate dtype
if self.device == "cuda":
input_tensor = input_tensor.to(self.device, dtype=torch.float16)
else:
input_tensor = input_tensor.to(self.device)
# Run inference
with torch.no_grad():
outputs = self._birefnet_model(input_tensor)
# BiRefNet outputs a list, get the final prediction
if isinstance(outputs, (list, tuple)):
pred = outputs[-1]
else:
pred = outputs
# Sigmoid to get probability map
pred = torch.sigmoid(pred)
# Convert to numpy
pred_np = pred.squeeze().cpu().numpy()
# Convert to 0-255 range
mask_array = (pred_np * 255).astype(np.uint8)
# Resize back to original size
mask_pil = Image.fromarray(mask_array, mode='L')
mask_pil = mask_pil.resize(original_size, Image.LANCZOS)
mask_array = np.array(mask_pil)
# Quality check
mean_val = mask_array.mean()
nonzero_ratio = np.count_nonzero(mask_array > 50) / mask_array.size
logger.info(f"📊 BiRefNet mask stats - Mean: {mean_val:.1f}, Coverage: {nonzero_ratio:.1%}")
if mean_val < 10:
logger.warning("⚠️ BiRefNet mask too weak, falling back")
return None
if nonzero_ratio < 0.03:
logger.warning("⚠️ BiRefNet foreground coverage too low, falling back")
return None
# Light post-processing for edge refinement
# Use morphological operations to clean up
kernel_small = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
mask_array = cv2.morphologyEx(mask_array, cv2.MORPH_CLOSE, kernel_small)
logger.info("✅ BiRefNet mask generation successful!")
return Image.fromarray(mask_array, mode='L')
except torch.cuda.OutOfMemoryError:
logger.error("❌ BiRefNet: GPU memory exhausted")
self._unload_birefnet_model()
return None
except Exception as e:
logger.error(f"❌ BiRefNet mask generation failed: {e}")
logger.error(f"📍 Traceback: {traceback.format_exc()}")
return None
def try_deep_learning_mask(self, original_image: Image.Image) -> Optional[Image.Image]:
"""
Intelligent foreground extraction with model priority:
1. BiRefNet (best quality, clean edges)
2. U²-Net via rembg (good fallback)
3. Return None to trigger traditional methods
Args:
original_image: Input PIL Image
Returns:
PIL Image (L mode) mask or None if all methods failed
"""
# Priority 1: Try BiRefNet first
logger.info("🤖 Attempting BiRefNet mask generation...")
birefnet_mask = self.try_birefnet_mask(original_image)
if birefnet_mask is not None:
logger.info("✅ Using BiRefNet generated mask")
return birefnet_mask
# Priority 2: Fallback to rembg (U²-Net)
logger.info("🔄 BiRefNet unavailable/failed, trying rembg...")
try:
logger.info("🤖 Starting rembg foreground extraction")
# Try u2net first (better for cartoons/objects like Snoopy)
try:
session = new_session('u2net')
logger.info("✅ Using u2net model")
except Exception as e:
logger.warning(f"u2net failed ({e}), trying u2net_human_seg")
try:
session = new_session('u2net_human_seg')
logger.info("✅ Using u2net_human_seg model")
except Exception as e2:
logger.error(f"All rembg models failed: {e2}")
return None
# Convert image to bytes for rembg
img_byte_arr = io.BytesIO()
original_image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
logger.info(f"📷 Image size: {len(img_byte_arr)} bytes")
# Perform background removal
result = remove(img_byte_arr, session=session)
result_img = Image.open(io.BytesIO(result)).convert('RGBA')
alpha_channel = result_img.split()[-1]
alpha_array = np.array(alpha_channel)
logger.info(f"📊 Raw alpha stats - Mean: {alpha_array.mean():.1f}, Min: {alpha_array.min()}, Max: {alpha_array.max()}")
# Step 1: Light smoothing to reduce noise but preserve edges
alpha_smoothed = cv2.GaussianBlur(alpha_array, (3, 3), 0.8)
# Step 2: Contrast stretching to utilize full range
alpha_stretched = cv2.normalize(alpha_smoothed, None, 0, 255, cv2.NORM_MINMAX)
# Step 3: CRITICAL FIX - More aggressive foreground preservation
# Instead of hard threshold, use adaptive approach
# Find the main subject area (high confidence regions)
high_confidence = alpha_stretched > 180
medium_confidence = (alpha_stretched > 60) & (alpha_stretched <= 180)
low_confidence = (alpha_stretched > 15) & (alpha_stretched <= 60)
# Create final mask with better extremity handling
final_alpha = np.zeros_like(alpha_stretched)
# High confidence areas - keep at full opacity
final_alpha[high_confidence] = 255
# Medium confidence - boost significantly
final_alpha[medium_confidence] = np.clip(alpha_stretched[medium_confidence] * 1.8, 200, 255)
# Low confidence - moderate boost (catches faint extremities)
final_alpha[low_confidence] = np.clip(alpha_stretched[low_confidence] * 2.5, 120, 199)
# Morphological operations to connect disconnected parts (hands, feet, tail)
kernel_small = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
kernel_medium = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
# Close small gaps (helps connect separated body parts)
final_alpha = cv2.morphologyEx(final_alpha, cv2.MORPH_CLOSE, kernel_small, iterations=1)
# Light dilation to ensure nothing gets cut off
final_alpha = cv2.dilate(final_alpha, kernel_small, iterations=1)
logger.info(f"📊 Final alpha stats - Mean: {final_alpha.mean():.1f}, Min: {final_alpha.min()}, Max: {final_alpha.max()}")
# Quality check - but be more lenient for cartoon characters
if final_alpha.mean() < 10:
logger.warning("⚠️ Alpha still too weak, falling back to traditional method")
return None
# Enhanced post-processing for cartoon characters
is_cartoon = self._detect_cartoon_character(original_image, final_alpha)
if is_cartoon:
logger.info("🎭 Detected cartoon/character image, applying specialized processing")
final_alpha = self._enhance_cartoon_mask(original_image, final_alpha)
# Count non-zero pixels to ensure we have substantial foreground
foreground_pixels = np.count_nonzero(final_alpha > 50)
total_pixels = final_alpha.size
foreground_ratio = foreground_pixels / total_pixels
logger.info(f"📊 Foreground coverage: {foreground_ratio:.1%} of image")
if foreground_ratio < 0.05: # Less than 5% is probably too little
logger.warning("⚠️ Very low foreground coverage, falling back to traditional method")
return None
mask = Image.fromarray(final_alpha.astype(np.uint8), mode='L')
logger.info("✅ Enhanced rembg mask generation successful!")
return mask
except Exception as e:
logger.error(f"❌ Deep learning mask extraction failed: {e}")
return None
def _detect_cartoon_character(self, original_image: Image.Image, alpha_mask: np.ndarray) -> bool:
"""
Detect if image is cartoon/line art (heuristic approach)
"""
try:
img_array = np.array(original_image.convert('RGB'))
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
# Calculate edge density (cartoons usually have more clear edges)
edges = cv2.Canny(gray, 50, 150)
edge_density = np.count_nonzero(edges) / max(edges.size, 1) # Avoid division by zero
# Calculate color complexity (cartoons usually have fewer colors) - optimize memory usage
h, w, c = img_array.shape
if h * w > 100000: # If image is too large, resize for processing
small_img = cv2.resize(img_array, (200, 200))
else:
small_img = img_array
unique_colors = len(np.unique(small_img.reshape(-1, 3), axis=0))
total_pixels = small_img.shape[0] * small_img.shape[1]
color_simplicity = unique_colors < (total_pixels * 0.1)
# Check for obvious black outlines
dark_pixels_ratio = np.count_nonzero(gray < 50) / max(gray.size, 1) # Avoid division by zero
has_black_outline = dark_pixels_ratio > 0.05
# Comprehensive judgment: high edge density + color simplicity + black outline = likely cartoon
is_cartoon = (edge_density > 0.05) and (color_simplicity or has_black_outline)
logger.info(f"🔍 Cartoon detection - Edge density: {edge_density:.3f}, Color simplicity: {color_simplicity}, Black outline: {has_black_outline} -> Cartoon: {is_cartoon}")
return is_cartoon
except Exception as e:
logger.error(f"❌ Cartoon detection failed: {e}")
logger.error(f"📍 Traceback: {traceback.format_exc()}")
print(f"❌ CARTOON DETECTION ERROR: {e}")
print(f"Traceback: {traceback.format_exc()}")
return False
def _enhance_cartoon_mask(self, original_image: Image.Image, alpha_mask: np.ndarray) -> np.ndarray:
"""
Enhanced mask processing for cartoon characters
"""
try:
img_array = np.array(original_image.convert('RGB'))
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
enhanced_alpha = alpha_mask.copy()
# Step 1: Black outline enhancement - find black outlines and enhance their alpha
th_dark = 80 # Adjustable parameter: black threshold
black_outline = gray < th_dark
# Dilate black outline region by 1px
kernel_dilate = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) # Adjustable parameter: dilation kernel size
black_outline_dilated = cv2.dilate(black_outline.astype(np.uint8), kernel_dilate, iterations=1)
# Set black outline region alpha directly to 255
enhanced_alpha[black_outline_dilated > 0] = 255
logger.info(f"🖤 Black outline enhanced: {np.count_nonzero(black_outline_dilated)} pixels")
# Step 2: Simplified internal enhancement - process white fill areas within outlines
# Find high confidence regions (alpha ≥ 160)
high_confidence = enhanced_alpha >= 160
# Apply close operation on high confidence regions to connect separated parts
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) # Adjustable parameter: close kernel size
high_confidence_closed = cv2.morphologyEx(high_confidence.astype(np.uint8), cv2.MORPH_CLOSE, kernel_close, iterations=1)
# Simplified approach: directly enhance medium confidence regions without complex flood fill
# Find medium/low confidence regions surrounded by high confidence regions
medium_confidence = (enhanced_alpha >= 80) & (enhanced_alpha < 160)
# Dilate high confidence region to include more internal areas
kernel_dilate_internal = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
high_confidence_expanded = cv2.dilate(high_confidence_closed, kernel_dilate_internal, iterations=1)
# Medium confidence pixels within expanded high confidence areas are considered internal fill
internal_fill_regions = medium_confidence & (high_confidence_expanded > 0)
# Enhance alpha of these internal fill regions to at least 220
min_alpha_for_fill = 220 # Adjustable parameter: minimum alpha for internal fill
enhanced_alpha[internal_fill_regions] = np.maximum(enhanced_alpha[internal_fill_regions], min_alpha_for_fill)
logger.info(f"🤍 Internal fill regions enhanced: {np.count_nonzero(internal_fill_regions)} pixels")
logger.info(f"📊 Enhanced alpha stats - Mean: {enhanced_alpha.mean():.1f}, Min: {enhanced_alpha.min()}, Max: {enhanced_alpha.max()}")
return enhanced_alpha
except Exception as e:
logger.error(f"❌ Cartoon mask enhancement failed: {e}")
logger.error(f"📍 Traceback: {traceback.format_exc()}")
print(f"❌ CARTOON MASK ENHANCEMENT ERROR: {e}")
print(f"Traceback: {traceback.format_exc()}")
return alpha_mask
def _adjust_mask_for_scene_focus(self, mask: Image.Image, original_image: Image.Image) -> Image.Image:
"""
Adjust mask for scene focus mode to include nearby objects like chairs, furniture
"""
try:
logger.info("🏠 Adjusting mask for scene focus mode...")
mask_array = np.array(mask)
img_array = np.array(original_image.convert('RGB'))
# Expand mask to include nearby objects
# Use larger dilation kernel to include furniture/objects
kernel_large = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 15))
expanded_mask = cv2.dilate(mask_array, kernel_large, iterations=2)
# Find contours in the expanded area to detect objects
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
edges = cv2.Canny(gray, 30, 100)
# Apply edge detection only in the expanded region
expanded_region = (expanded_mask > 0) & (mask_array == 0)
object_edges = np.zeros_like(edges)
object_edges[expanded_region] = edges[expanded_region]
# Close gaps to form complete objects
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
object_mask = cv2.morphologyEx(object_edges, cv2.MORPH_CLOSE, kernel_close)
object_mask = cv2.dilate(object_mask, kernel_close, iterations=1)
# Combine with original mask
final_mask = np.maximum(mask_array, object_mask)
logger.info("✅ Scene focus adjustment completed")
return Image.fromarray(final_mask)
except Exception as e:
logger.error(f"❌ Scene focus adjustment failed: {e}")
return mask
def create_gradient_based_mask(self, original_image: Image.Image, mode: str = "center", focus_mode: str = "person") -> Image.Image:
"""
Intelligent foreground extraction: prioritize deep learning models, fallback to traditional methods
Focus mode: 'person' for tight crop around person, 'scene' for including nearby objects
"""
width, height = original_image.size
logger.info(f"🎯 Creating mask for {width}x{height} image, mode: {mode}, focus: {focus_mode}")
if mode == "center":
# Try using deep learning models for intelligent foreground extraction
logger.info("🤖 Attempting deep learning mask generation...")
dl_mask = self.try_deep_learning_mask(original_image)
if dl_mask is not None:
logger.info("✅ Using deep learning generated mask")
# Apply focus mode adjustments to deep learning mask
if focus_mode == "scene":
dl_mask = self._adjust_mask_for_scene_focus(dl_mask, original_image)
return dl_mask
# Fallback to traditional method
logger.info("🔄 Deep learning failed, using traditional gradient-based method")
img_array = np.array(original_image.convert('RGB'))
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
# First-order derivatives: use Sobel operator for edge detection
grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
gradient_magnitude = np.sqrt(grad_x**2 + grad_y**2)
# Second-order derivatives: use Laplacian operator for texture change detection
laplacian = cv2.Laplacian(gray, cv2.CV_64F, ksize=3)
laplacian_abs = np.abs(laplacian)
# Combine first and second order derivatives
combined_edges = gradient_magnitude * 0.7 + laplacian_abs * 0.3
combined_edges = (combined_edges / np.max(combined_edges)) * 255
# Threshold processing to find strong edges
_, edge_binary = cv2.threshold(combined_edges.astype(np.uint8), 20, 255, cv2.THRESH_BINARY)
# Morphological operations to connect edges
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
edge_binary = cv2.morphologyEx(edge_binary, cv2.MORPH_CLOSE, kernel)
# Find contours and create mask
contours, _ = cv2.findContours(edge_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
# Find largest contour (main subject)
largest_contour = max(contours, key=cv2.contourArea)
contour_mask = np.zeros((height, width), dtype=np.uint8)
cv2.fillPoly(contour_mask, [largest_contour], 255)
# Create foreground enhancement mask: specially protect dark regions
dark_mask = (gray < 90).astype(np.uint8) * 255
morph_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
dark_mask = cv2.morphologyEx(dark_mask, cv2.MORPH_CLOSE, morph_kernel, iterations=1)
dark_mask = cv2.dilate(dark_mask, morph_kernel, iterations=2)
contour_mask = cv2.bitwise_or(contour_mask, dark_mask)
# Get core foreground: clean holes and fill gaps
close_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
core_mask = cv2.morphologyEx(contour_mask, cv2.MORPH_CLOSE, close_kernel, iterations=1)
open_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
core_mask = cv2.morphologyEx(core_mask, cv2.MORPH_OPEN, open_kernel, iterations=1)
# Convert to binary core (0/255)
_, core_binary = cv2.threshold(core_mask, 127, 255, cv2.THRESH_BINARY)
# Keep only slight dilation to avoid foreground being eaten
dilate_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
core_binary = cv2.dilate(core_binary, dilate_kernel, iterations=1)
# Distance transform feathering: shrink feathering range for sharp edges
FEATHER_PX = 4
# Calculate distance transform
core_float = core_binary.astype(np.float32) / 255.0
distances = cv2.distanceTransform((1 - core_float).astype(np.uint8), cv2.DIST_L2, 5)
# Create feathering mask: 0→FEATHER_PX linear mapping to 1→0
feather_mask = np.ones_like(distances)
edge_region = (distances > 0) & (distances <= FEATHER_PX)
feather_mask[edge_region] = 1.0 - (distances[edge_region] / FEATHER_PX)
feather_mask[distances > FEATHER_PX] = 0.0
# Apply double-smoothstep curve: make transition steeper, reduce semi-transparent halos
def double_smoothstep(t):
t = np.clip(t, 0, 1)
s1 = t * t * (3 - 2 * t)
return s1 * s1 * (3 - 2 * s1) # Equivalent to t^3 (10 - 15t + 6t^2)
# Combine core with feathering: core area keeps 255, edges use double_smoothstep feathering
final_alpha = np.zeros_like(distances)
final_alpha[core_binary > 127] = 1.0 # Core area
final_alpha[edge_region] = double_smoothstep(feather_mask[edge_region]) # Feathering area
# Convert to 0-255 range
final_mask = (final_alpha * 255).astype(np.uint8)
# Apply guided filter for edge-preserving smoothing
final_mask = self.apply_guided_filter(final_mask, original_image, radius=8, eps=0.01)
mask = Image.fromarray(final_mask)
else:
# Backup plan: use large ellipse
mask = Image.new('L', (width, height), 0)
draw = ImageDraw.Draw(mask)
center_x, center_y = width // 2, height // 2
width_radius = int(width * 0.45)
height_radius = int(width * 0.48)
draw.ellipse([
center_x - width_radius, center_y - height_radius,
center_x + width_radius, center_y + height_radius
], fill=255)
# Apply guided filter instead of Gaussian blur
mask_array = np.array(mask)
mask_array = self.apply_guided_filter(mask_array, original_image, radius=10, eps=0.02)
mask = Image.fromarray(mask_array)
elif mode == "left_half":
# Keep original logic unchanged - ensure Snoopy and other functions work normally
mask = Image.new('L', (width, height), 0)
mask_array = np.array(mask)
mask_array[:, :width//2] = 255
transition_zone = width // 10
for i in range(transition_zone):
x_pos = width//2 + i
if x_pos < width:
alpha = 255 * (1 - i / transition_zone)
mask_array[:, x_pos] = int(alpha)
mask = Image.fromarray(mask_array)
elif mode == "right_half":
# Keep original logic unchanged - ensure Snoopy and other functions work normally
mask = Image.new('L', (width, height), 0)
mask_array = np.array(mask)
mask_array[:, width//2:] = 255
transition_zone = width // 10
for i in range(transition_zone):
x_pos = width//2 - i - 1
if x_pos >= 0:
alpha = 255 * (1 - i / transition_zone)
mask_array[:, x_pos] = int(alpha)
mask = Image.fromarray(mask_array)
elif mode == "full":
mask = Image.new('L', (width, height), 0)
draw = ImageDraw.Draw(mask)
center_x, center_y = width // 2, height // 2
radius = min(width, height) // 8
draw.ellipse([
center_x - radius, center_y - radius,
center_x + radius, center_y + radius
], fill=255)
mask = mask.filter(ImageFilter.GaussianBlur(radius=5))
return mask