Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,132 +1,30 @@
|
|
| 1 |
-
import os
|
| 2 |
import torch
|
| 3 |
-
import gc
|
| 4 |
-
import gradio as gr
|
| 5 |
-
import numpy as np
|
| 6 |
-
from PIL import Image
|
| 7 |
-
from einops import rearrange
|
| 8 |
-
import io
|
| 9 |
-
import requests
|
| 10 |
-
import spaces
|
| 11 |
-
from huggingface_hub import login
|
| 12 |
-
from gradio_imageslider import ImageSlider
|
| 13 |
from diffusers.utils import load_image
|
| 14 |
from diffusers import FluxControlNetPipeline, FluxControlNetModel
|
| 15 |
|
| 16 |
-
# Device settings: CPU for loading, GPU for inference
|
| 17 |
-
device_cpu = torch.device("cpu")
|
| 18 |
-
device_gpu = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
-
|
| 20 |
-
# Model identifiers
|
| 21 |
base_model = 'black-forest-labs/FLUX.1-dev'
|
| 22 |
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
pipe
|
| 27 |
|
|
|
|
| 28 |
controlnet_conditioning_scale = 0.5
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
# Convert AVIF to PNG if necessary
|
| 47 |
-
if image.format == 'AVIF':
|
| 48 |
-
image = image.convert("RGB") # Convert to a format PIL can handle
|
| 49 |
-
return image
|
| 50 |
-
|
| 51 |
-
def preprocess_image(image, target_width, target_height, crop=True):
|
| 52 |
-
"""Preprocess image to match the target dimensions."""
|
| 53 |
-
image = load_and_convert_image(image)
|
| 54 |
-
if crop:
|
| 55 |
-
original_width, original_height = image.size
|
| 56 |
-
|
| 57 |
-
# Resize to match the target size without stretching
|
| 58 |
-
scale = max(target_width / original_width, target_height / original_height)
|
| 59 |
-
resized_width = int(scale * original_width)
|
| 60 |
-
resized_height = int(scale * original_height)
|
| 61 |
-
|
| 62 |
-
image = image.resize((resized_width, resized_height), Image.LANCZOS)
|
| 63 |
-
|
| 64 |
-
# Center crop to match the target dimensions
|
| 65 |
-
left = (resized_width - target_width) // 2
|
| 66 |
-
top = (resized_height - target_height) // 2
|
| 67 |
-
image = image.crop((left, top, left + target_width, top + target_height))
|
| 68 |
-
else:
|
| 69 |
-
image = image.resize((target_width, target_height), Image.LANCZOS)
|
| 70 |
-
|
| 71 |
-
return image
|
| 72 |
-
|
| 73 |
-
def clear_cuda_memory():
|
| 74 |
-
"""Clear CUDA memory."""
|
| 75 |
-
gc.collect()
|
| 76 |
-
torch.cuda.empty_cache()
|
| 77 |
-
torch.cuda.ipc_collect()
|
| 78 |
-
|
| 79 |
-
@spaces.GPU(duration=120)
|
| 80 |
-
def generate_image(prompt, control_image, control_mode, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False):
|
| 81 |
-
"""Generate image using the FLUX.1 ControlNet model."""
|
| 82 |
-
clear_cuda_memory()
|
| 83 |
-
|
| 84 |
-
if random_seed:
|
| 85 |
-
seed = np.random.randint(0, 10000)
|
| 86 |
-
|
| 87 |
-
if not os.path.isdir("./controlnet_results/"):
|
| 88 |
-
os.makedirs("./controlnet_results/")
|
| 89 |
-
|
| 90 |
-
# Move model to GPU for inference
|
| 91 |
-
pipe.to(device_gpu)
|
| 92 |
-
|
| 93 |
-
control_image = preprocess_image(control_image, width, height)
|
| 94 |
-
|
| 95 |
-
torch.manual_seed(seed)
|
| 96 |
-
with torch.no_grad():
|
| 97 |
-
image = pipe(
|
| 98 |
-
prompt,
|
| 99 |
-
control_image=control_image,
|
| 100 |
-
control_mode=control_modes[control_mode],
|
| 101 |
-
width=width,
|
| 102 |
-
height=height,
|
| 103 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 104 |
-
num_inference_steps=num_steps,
|
| 105 |
-
guidance_scale=guidance,
|
| 106 |
-
).images[0]
|
| 107 |
-
|
| 108 |
-
# Move model back to CPU after inference
|
| 109 |
-
pipe.to(device_cpu)
|
| 110 |
-
|
| 111 |
-
return [control_image, image] # Return both images for slider
|
| 112 |
-
|
| 113 |
-
interface = gr.Interface(
|
| 114 |
-
fn=generate_image,
|
| 115 |
-
inputs=[
|
| 116 |
-
gr.Textbox(label="Prompt"),
|
| 117 |
-
gr.Image(type="pil", label="Control Image"),
|
| 118 |
-
gr.Dropdown(choices=list(control_modes.keys()), label="Control Mode", value="canny"),
|
| 119 |
-
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
|
| 120 |
-
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
|
| 121 |
-
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"),
|
| 122 |
-
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"),
|
| 123 |
-
gr.Number(value=42, label="Seed"),
|
| 124 |
-
gr.Checkbox(label="Random Seed")
|
| 125 |
-
],
|
| 126 |
-
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
|
| 127 |
-
title="FLUX.1 Controlnet Canny",
|
| 128 |
-
description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
if __name__ == "__main__":
|
| 132 |
-
interface.launch(share=True)
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from diffusers.utils import load_image
|
| 3 |
from diffusers import FluxControlNetPipeline, FluxControlNetModel
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
base_model = 'black-forest-labs/FLUX.1-dev'
|
| 6 |
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
| 7 |
|
| 8 |
+
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
| 9 |
+
pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
| 10 |
+
pipe.to("cuda")
|
| 11 |
|
| 12 |
+
control_image_canny = load_image("https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union-alpha/resolve/main/images/canny.jpg")
|
| 13 |
controlnet_conditioning_scale = 0.5
|
| 14 |
+
control_mode = 0
|
| 15 |
+
|
| 16 |
+
width, height = control_image.size
|
| 17 |
+
|
| 18 |
+
prompt = 'A bohemian-style female travel blogger with sun-kissed skin and messy beach waves.'
|
| 19 |
+
|
| 20 |
+
image = pipe(
|
| 21 |
+
prompt,
|
| 22 |
+
control_image=control_image,
|
| 23 |
+
control_mode=control_mode,
|
| 24 |
+
width=width,
|
| 25 |
+
height=height,
|
| 26 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 27 |
+
num_inference_steps=24,
|
| 28 |
+
guidance_scale=3.5,
|
| 29 |
+
).images[0]
|
| 30 |
+
image.save("image.jpg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|