Spaces:
Sleeping
Sleeping
Update DPTNet_eval/DPTNet_quant_sep.py
Browse files- DPTNet_eval/DPTNet_quant_sep.py +24 -26
DPTNet_eval/DPTNet_quant_sep.py
CHANGED
|
@@ -4,6 +4,9 @@ import numpy as np
|
|
| 4 |
import torchaudio
|
| 5 |
import yaml
|
| 6 |
from . import asteroid_test
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def get_conf():
|
|
@@ -32,19 +35,35 @@ def get_conf():
|
|
| 32 |
|
| 33 |
def load_dpt_model():
|
| 34 |
print('Load Separation Model...')
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
conf_filterbank, conf_masknet = get_conf()
|
| 37 |
-
|
| 38 |
-
model =
|
| 39 |
model = torch.quantization.quantize_dynamic(model, {torch.nn.LSTM, torch.nn.Linear}, dtype=torch.qint8)
|
|
|
|
| 40 |
state_dict = torch.load(model_path, map_location="cpu")
|
| 41 |
model.load_state_dict(state_dict)
|
| 42 |
model.eval()
|
| 43 |
return model
|
| 44 |
|
|
|
|
| 45 |
def dpt_sep_process(wav_path, model=None, outfilename=None):
|
| 46 |
if model is None:
|
| 47 |
-
model =
|
| 48 |
|
| 49 |
x, sr = torchaudio.load(wav_path)
|
| 50 |
x = x.cpu()
|
|
@@ -73,28 +92,7 @@ def dpt_sep_process(wav_path, model=None, outfilename=None):
|
|
| 73 |
else:
|
| 74 |
torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr)
|
| 75 |
torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr)
|
| 76 |
-
|
| 77 |
-
# def dpt_sep_process(wav_path, model=None, outfilename=None):
|
| 78 |
-
# if model == None:
|
| 79 |
-
# model = load_model()
|
| 80 |
-
# x, sr = torchaudio.load(wav_path)
|
| 81 |
-
# x = x.cpu()
|
| 82 |
-
# with torch.no_grad():
|
| 83 |
-
# est_sources = model(x)
|
| 84 |
-
|
| 85 |
-
# est_sources_np = est_sources.squeeze(0)
|
| 86 |
-
|
| 87 |
-
# sep_1, sep_2 = est_sources_np
|
| 88 |
-
# sep_1 = sep_1 * x[0].abs().max().item() / sep_1.abs().max().item()
|
| 89 |
-
# sep_2 = sep_2 * x[0].abs().max().item() / sep_2.abs().max().item()
|
| 90 |
-
|
| 91 |
-
# if outfilename != None:
|
| 92 |
-
# torchaudio.save(outfilename.replace('.wav', '_sep1.wav'), sep_1, sr)
|
| 93 |
-
# torchaudio.save(outfilename.replace('.wav', '_sep2.wav'), sep_2, sr)
|
| 94 |
-
# torchaudio.save(outfilename.replace('.wav', '_mix.wav'), x, sr)
|
| 95 |
-
# else:
|
| 96 |
-
# torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr)
|
| 97 |
-
# torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr)
|
| 98 |
|
| 99 |
if __name__ == '__main__':
|
| 100 |
print("This module should be used via Flask or Gradio.")
|
|
|
|
| 4 |
import torchaudio
|
| 5 |
import yaml
|
| 6 |
from . import asteroid_test
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
|
| 9 |
+
torchaudio.set_audio_backend("sox_io")
|
| 10 |
|
| 11 |
|
| 12 |
def get_conf():
|
|
|
|
| 35 |
|
| 36 |
def load_dpt_model():
|
| 37 |
print('Load Separation Model...')
|
| 38 |
+
|
| 39 |
+
# 👇 從環境變數取得 HF Token
|
| 40 |
+
from huggingface_hub import hf_hub_download
|
| 41 |
+
speech_sep_token = os.getenv("SpeechSeparation")
|
| 42 |
+
if not speech_sep_token:
|
| 43 |
+
raise EnvironmentError("環境變數 SpeechSeparation 未設定!")
|
| 44 |
+
|
| 45 |
+
# 👇 從 Hugging Face Hub 下載模型權重
|
| 46 |
+
model_path = hf_hub_download(
|
| 47 |
+
repo_id="DeepLearning101/speech-separation", # 替換成你自己的 repo 名稱
|
| 48 |
+
filename="train_dptnet_aishell_partOverlap_B2_300epoch_quan-int8.p",
|
| 49 |
+
token=speech_sep_token
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# 👇 原本邏輯完全不變
|
| 53 |
conf_filterbank, conf_masknet = get_conf()
|
| 54 |
+
model_class = getattr(asteroid_test, "DPTNet")
|
| 55 |
+
model = model_class(**conf_filterbank, **conf_masknet)
|
| 56 |
model = torch.quantization.quantize_dynamic(model, {torch.nn.LSTM, torch.nn.Linear}, dtype=torch.qint8)
|
| 57 |
+
|
| 58 |
state_dict = torch.load(model_path, map_location="cpu")
|
| 59 |
model.load_state_dict(state_dict)
|
| 60 |
model.eval()
|
| 61 |
return model
|
| 62 |
|
| 63 |
+
|
| 64 |
def dpt_sep_process(wav_path, model=None, outfilename=None):
|
| 65 |
if model is None:
|
| 66 |
+
model = load_dpt_model()
|
| 67 |
|
| 68 |
x, sr = torchaudio.load(wav_path)
|
| 69 |
x = x.cpu()
|
|
|
|
| 92 |
else:
|
| 93 |
torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr)
|
| 94 |
torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr)
|
| 95 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
if __name__ == '__main__':
|
| 98 |
print("This module should be used via Flask or Gradio.")
|