Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 3 |
+
import torch
|
| 4 |
+
import re
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import spaces # Add spaces import for Hugging Face Spaces
|
| 7 |
+
|
| 8 |
+
# Model information
|
| 9 |
+
MODEL_ID = "DeepMount00/SmolVLM-Base-ocr_base"
|
| 10 |
+
OCR_INSTRUCTION = "Sei un assistente esperto di OCR, converti il testo in formato MD."
|
| 11 |
+
|
| 12 |
+
# Load processor and model
|
| 13 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
| 14 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 15 |
+
MODEL_ID,
|
| 16 |
+
torch_dtype=torch.bfloat16,
|
| 17 |
+
).to("cuda") # Ensure model loads on CUDA for Spaces
|
| 18 |
+
|
| 19 |
+
@spaces.GPU # Add spaces.GPU decorator for GPU acceleration
|
| 20 |
+
def process_image(image, progress=gr.Progress()):
|
| 21 |
+
if image is None:
|
| 22 |
+
gr.Error("Please upload an image to process.")
|
| 23 |
+
return "Please upload an image to process."
|
| 24 |
+
|
| 25 |
+
progress(0, desc="Starting OCR processing...")
|
| 26 |
+
|
| 27 |
+
# Convert from Gradio's image format to PIL
|
| 28 |
+
if isinstance(image, str):
|
| 29 |
+
image = Image.open(image).convert("RGB")
|
| 30 |
+
|
| 31 |
+
progress(0.2, desc="Preparing image...")
|
| 32 |
+
|
| 33 |
+
# Create input messages - note that the instruction is included as part of the user message
|
| 34 |
+
messages = [
|
| 35 |
+
{
|
| 36 |
+
"role": "user",
|
| 37 |
+
"content": [
|
| 38 |
+
{"type": "image"},
|
| 39 |
+
{"type": "text", "text": OCR_INSTRUCTION}
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
# Prepare inputs
|
| 45 |
+
progress(0.4, desc="Processing with model...")
|
| 46 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 47 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
| 48 |
+
inputs = inputs.to('cuda') # Move inputs to CUDA
|
| 49 |
+
|
| 50 |
+
# Generate outputs
|
| 51 |
+
progress(0.6, desc="Generating text...")
|
| 52 |
+
with torch.no_grad():
|
| 53 |
+
generated_ids = model.generate(
|
| 54 |
+
**inputs,
|
| 55 |
+
max_new_tokens=4096,
|
| 56 |
+
temperature=0.1
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Decode outputs
|
| 60 |
+
progress(0.8, desc="Finalizing results...")
|
| 61 |
+
generated_text = processor.batch_decode(
|
| 62 |
+
generated_ids,
|
| 63 |
+
skip_special_tokens=True
|
| 64 |
+
)[0]
|
| 65 |
+
|
| 66 |
+
# Extract only the assistant's response
|
| 67 |
+
# Remove any "User:" and "Assistant:" prefixes if present
|
| 68 |
+
cleaned_text = generated_text
|
| 69 |
+
|
| 70 |
+
# Remove user prompt and "User:" prefix if present
|
| 71 |
+
user_pattern = r"User:.*?(?=Assistant:|$)"
|
| 72 |
+
cleaned_text = re.sub(user_pattern, "", cleaned_text, flags=re.DOTALL)
|
| 73 |
+
|
| 74 |
+
# Remove "Assistant:" prefix if present
|
| 75 |
+
assistant_pattern = r"Assistant:\s*"
|
| 76 |
+
cleaned_text = re.sub(assistant_pattern, "", cleaned_text)
|
| 77 |
+
|
| 78 |
+
# Clean up any extra whitespace
|
| 79 |
+
cleaned_text = cleaned_text.strip()
|
| 80 |
+
|
| 81 |
+
progress(1.0, desc="Done!")
|
| 82 |
+
return cleaned_text # Return only the cleaned text
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# Create Gradio interface
|
| 86 |
+
with gr.Blocks() as demo:
|
| 87 |
+
gr.Markdown("# OCR to Markdown Converter")
|
| 88 |
+
gr.Markdown(
|
| 89 |
+
f"Upload an image containing text to convert it to Markdown format. This tool uses the {MODEL_ID} model with a fixed instruction: '{OCR_INSTRUCTION}'")
|
| 90 |
+
|
| 91 |
+
with gr.Row():
|
| 92 |
+
with gr.Column(scale=1):
|
| 93 |
+
input_image = gr.Image(type="pil", label="Upload an image containing text")
|
| 94 |
+
submit_btn = gr.Button("Process Image", variant="primary")
|
| 95 |
+
with gr.Column(scale=1):
|
| 96 |
+
output_text = gr.Textbox(label="Raw Text", lines=15)
|
| 97 |
+
copy_btn = gr.Button("Select All Text", variant="secondary")
|
| 98 |
+
|
| 99 |
+
submit_btn.click(
|
| 100 |
+
fn=process_image,
|
| 101 |
+
inputs=input_image,
|
| 102 |
+
outputs=output_text,
|
| 103 |
+
show_progress="full",
|
| 104 |
+
queue=True # Enable queue for Spaces
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
def copy_to_clipboard(text):
|
| 108 |
+
return text
|
| 109 |
+
|
| 110 |
+
copy_btn.click(
|
| 111 |
+
fn=copy_to_clipboard,
|
| 112 |
+
inputs=output_text,
|
| 113 |
+
outputs=output_text
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Launch the app with default Spaces configuration (no need for local file paths)
|
| 117 |
+
demo.launch()
|