Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +117 -0
- htmlTemplates.py +44 -0
- requirements.txt +16 -0
app.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
from PyPDF2 import PdfReader
|
| 5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 6 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
| 7 |
+
from langchain.vectorstores import FAISS
|
| 8 |
+
from langchain.chat_models import ChatOpenAI
|
| 9 |
+
from langchain.memory import ConversationBufferMemory
|
| 10 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 11 |
+
from htmlTemplates import css, bot_template, user_template
|
| 12 |
+
from langchain.llms import HuggingFaceHub
|
| 13 |
+
|
| 14 |
+
# set this key as an environment variable
|
| 15 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
|
| 16 |
+
|
| 17 |
+
def get_pdf_text(pdf_docs : list) -> str:
|
| 18 |
+
text = ""
|
| 19 |
+
for pdf in pdf_docs:
|
| 20 |
+
pdf_reader = PdfReader(pdf)
|
| 21 |
+
for page in pdf_reader.pages:
|
| 22 |
+
text += page.extract_text()
|
| 23 |
+
return text
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_text_chunks(text:str) ->list:
|
| 27 |
+
text_splitter = CharacterTextSplitter(
|
| 28 |
+
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
|
| 29 |
+
)
|
| 30 |
+
chunks = text_splitter.split_text(text)
|
| 31 |
+
return chunks
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_vectorstore(text_chunks : list) -> FAISS:
|
| 35 |
+
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 36 |
+
encode_kwargs = {
|
| 37 |
+
"normalize_embeddings": True
|
| 38 |
+
} # set True to compute cosine similarity
|
| 39 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
| 40 |
+
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
|
| 41 |
+
)
|
| 42 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
| 43 |
+
return vectorstore
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
|
| 47 |
+
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
| 48 |
+
llm = HuggingFaceHub(
|
| 49 |
+
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 50 |
+
#repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
|
| 51 |
+
model_kwargs={"temperature": 0.5, "max_length": 1048},
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 55 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
| 56 |
+
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
|
| 57 |
+
)
|
| 58 |
+
return conversation_chain
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def handle_userinput(user_question:str):
|
| 62 |
+
response = st.session_state.conversation({"question": user_question})
|
| 63 |
+
st.session_state.chat_history = response["chat_history"]
|
| 64 |
+
|
| 65 |
+
for i, message in enumerate(st.session_state.chat_history):
|
| 66 |
+
if i % 2 == 0:
|
| 67 |
+
st.write(" Usuario: " + message.content)
|
| 68 |
+
else:
|
| 69 |
+
st.write("🤖 ChatBot: " + message.content)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def main():
|
| 73 |
+
st.set_page_config(
|
| 74 |
+
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
|
| 75 |
+
page_icon=":books:",
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
st.markdown("# Chat with a Bot")
|
| 79 |
+
st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾")
|
| 80 |
+
|
| 81 |
+
st.write(css, unsafe_allow_html=True)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
if "conversation" not in st.session_state:
|
| 85 |
+
st.session_state.conversation = None
|
| 86 |
+
if "chat_history" not in st.session_state:
|
| 87 |
+
st.session_state.chat_history = None
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:")
|
| 91 |
+
user_question = st.text_input("Ask a question about your documents:")
|
| 92 |
+
if user_question:
|
| 93 |
+
handle_userinput(user_question)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
with st.sidebar:
|
| 97 |
+
st.subheader("Your documents")
|
| 98 |
+
pdf_docs = st.file_uploader(
|
| 99 |
+
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
|
| 100 |
+
)
|
| 101 |
+
if st.button("Process"):
|
| 102 |
+
with st.spinner("Processing"):
|
| 103 |
+
# get pdf text
|
| 104 |
+
raw_text = get_pdf_text(pdf_docs)
|
| 105 |
+
|
| 106 |
+
# get the text chunks
|
| 107 |
+
text_chunks = get_text_chunks(raw_text)
|
| 108 |
+
|
| 109 |
+
# create vector store
|
| 110 |
+
vectorstore = get_vectorstore(text_chunks)
|
| 111 |
+
|
| 112 |
+
# create conversation chain
|
| 113 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
main()
|
htmlTemplates.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
css = """
|
| 2 |
+
<style>
|
| 3 |
+
.chat-message {
|
| 4 |
+
padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
|
| 5 |
+
}
|
| 6 |
+
.chat-message.user {
|
| 7 |
+
background-color: #2b313e
|
| 8 |
+
}
|
| 9 |
+
.chat-message.bot {
|
| 10 |
+
background-color: #475063
|
| 11 |
+
}
|
| 12 |
+
.chat-message .avatar {
|
| 13 |
+
width: 20%;
|
| 14 |
+
}
|
| 15 |
+
.chat-message .avatar img {
|
| 16 |
+
max-width: 78px;
|
| 17 |
+
max-height: 78px;
|
| 18 |
+
border-radius: 50%;
|
| 19 |
+
object-fit: cover;
|
| 20 |
+
}
|
| 21 |
+
.chat-message .message {
|
| 22 |
+
width: 80%;
|
| 23 |
+
padding: 0 1.5rem;
|
| 24 |
+
color: #fff;
|
| 25 |
+
}
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
bot_template = """
|
| 29 |
+
<div class="chat-message bot">
|
| 30 |
+
<div class="avatar">
|
| 31 |
+
<img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
|
| 32 |
+
</div>
|
| 33 |
+
<div class="message">{{MSG}}</div>
|
| 34 |
+
</div>
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
user_template = """
|
| 38 |
+
<div class="chat-message user">
|
| 39 |
+
<div class="avatar">
|
| 40 |
+
<img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
|
| 41 |
+
</div>
|
| 42 |
+
<div class="message">{{MSG}}</div>
|
| 43 |
+
</div>
|
| 44 |
+
"""
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain==0.0.335
|
| 2 |
+
PyPDF2==3.0.1
|
| 3 |
+
python-dotenv==1.0.0
|
| 4 |
+
streamlit==1.28.2
|
| 5 |
+
openai==1.2.4
|
| 6 |
+
faiss-cpu==1.7.4
|
| 7 |
+
altair==5.1.2
|
| 8 |
+
tiktoken==0.5.1
|
| 9 |
+
black==23.11.0
|
| 10 |
+
# uncomment to use huggingface llms
|
| 11 |
+
huggingface-hub==0.17.3
|
| 12 |
+
|
| 13 |
+
# uncomment to use instructor embeddings
|
| 14 |
+
InstructorEmbedding==1.0.1
|
| 15 |
+
sentence-transformers==2.2.2
|
| 16 |
+
transformers
|