DegMaTsu commited on
Commit
61cde45
·
0 Parent(s):

Initial commit FaceFusion-NextTech-2

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .editorconfig +8 -0
  2. .flake8 +6 -0
  3. .gitattributes +36 -0
  4. .github/FUNDING.yml +1 -0
  5. .github/preview.png +3 -0
  6. .github/workflows/ci.yml +58 -0
  7. .gitignore +6 -0
  8. CHANGES_SUMMARY.md +139 -0
  9. LICENSE.md +3 -0
  10. ORIGINAL_README.md +61 -0
  11. QUICK_REFERENCE.md +246 -0
  12. README.md +52 -0
  13. UI_ENHANCEMENTS_SUMMARY.md +226 -0
  14. UI_IMPROVEMENTS_GUIDE.md +448 -0
  15. app.py +18 -0
  16. facefusion.ico +0 -0
  17. facefusion.ini +123 -0
  18. facefusion.py +10 -0
  19. facefusion/__init__.py +0 -0
  20. facefusion/app_context.py +16 -0
  21. facefusion/args.py +140 -0
  22. facefusion/audio.py +143 -0
  23. facefusion/benchmarker.py +106 -0
  24. facefusion/choices.py +165 -0
  25. facefusion/cli_helper.py +35 -0
  26. facefusion/common_helper.py +84 -0
  27. facefusion/config.py +74 -0
  28. facefusion/content_analyser.py +225 -0
  29. facefusion/core.py +517 -0
  30. facefusion/curl_builder.py +27 -0
  31. facefusion/date_helper.py +28 -0
  32. facefusion/download.py +174 -0
  33. facefusion/execution.py +156 -0
  34. facefusion/exit_helper.py +26 -0
  35. facefusion/face_analyser.py +124 -0
  36. facefusion/face_classifier.py +134 -0
  37. facefusion/face_detector.py +323 -0
  38. facefusion/face_helper.py +254 -0
  39. facefusion/face_landmarker.py +222 -0
  40. facefusion/face_masker.py +240 -0
  41. facefusion/face_recognizer.py +87 -0
  42. facefusion/face_selector.py +108 -0
  43. facefusion/face_store.py +43 -0
  44. facefusion/ffmpeg.py +286 -0
  45. facefusion/ffmpeg_builder.py +248 -0
  46. facefusion/filesystem.py +188 -0
  47. facefusion/hash_helper.py +32 -0
  48. facefusion/inference_manager.py +74 -0
  49. facefusion/installer.py +96 -0
  50. facefusion/jobs/__init__.py +0 -0
.editorconfig ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ root = true
2
+
3
+ [*]
4
+ end_of_line = lf
5
+ insert_final_newline = true
6
+ indent_size = 4
7
+ indent_style = tab
8
+ trim_trailing_whitespace = true
.flake8 ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [flake8]
2
+ select = E22, E23, E24, E27, E3, E4, E7, F, I1, I2
3
+ per-file-ignores = facefusion.py:E402, install.py:E402
4
+ plugins = flake8-import-order
5
+ application_import_names = facefusion
6
+ import-order-style = pycharm
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ .github/preview.png filter=lfs diff=lfs merge=lfs -text
.github/FUNDING.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ custom: [ buymeacoffee.com/facefusion, ko-fi.com/facefusion ]
.github/preview.png ADDED

Git LFS Details

  • SHA256: c0034c186e90bc7d63326baf48ad942de2d965c915c238861a6c233daffc7e3e
  • Pointer size: 132 Bytes
  • Size of remote file: 1.32 MB
.github/workflows/ci.yml ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: ci
2
+
3
+ on: [ push, pull_request ]
4
+
5
+ jobs:
6
+ lint:
7
+ runs-on: ubuntu-latest
8
+ steps:
9
+ - name: Checkout
10
+ uses: actions/checkout@v4
11
+ - name: Set up Python 3.12
12
+ uses: actions/setup-python@v5
13
+ with:
14
+ python-version: '3.12'
15
+ - run: pip install flake8
16
+ - run: pip install flake8-import-order
17
+ - run: pip install mypy
18
+ - run: flake8 facefusion.py install.py
19
+ - run: flake8 facefusion tests
20
+ - run: mypy facefusion.py install.py
21
+ - run: mypy facefusion tests
22
+ test:
23
+ strategy:
24
+ matrix:
25
+ os: [ macos-latest, ubuntu-latest, windows-latest ]
26
+ runs-on: ${{ matrix.os }}
27
+ steps:
28
+ - name: Checkout
29
+ uses: actions/checkout@v4
30
+ - name: Set up FFmpeg
31
+ uses: AnimMouse/setup-ffmpeg@v1
32
+ - name: Set up Python 3.12
33
+ uses: actions/setup-python@v5
34
+ with:
35
+ python-version: '3.12'
36
+ - run: python install.py --onnxruntime default --skip-conda
37
+ - run: pip install pytest
38
+ - run: pytest
39
+ report:
40
+ needs: test
41
+ runs-on: ubuntu-latest
42
+ steps:
43
+ - name: Checkout
44
+ uses: actions/checkout@v4
45
+ - name: Set up FFmpeg
46
+ uses: FedericoCarboni/setup-ffmpeg@v3
47
+ - name: Set up Python 3.12
48
+ uses: actions/setup-python@v5
49
+ with:
50
+ python-version: '3.12'
51
+ - run: python install.py --onnxruntime default --skip-conda
52
+ - run: pip install coveralls
53
+ - run: pip install pytest
54
+ - run: pip install pytest-cov
55
+ - run: pytest tests --cov facefusion
56
+ - run: coveralls --service github
57
+ env:
58
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ __pycache__
2
+ .assets
3
+ .caches
4
+ .jobs
5
+ .idea
6
+ .vscode
CHANGES_SUMMARY.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FaceFusion UI Improvements - Summary of Changes
2
+
3
+ ## Date: October 6, 2025
4
+
5
+ This document summarizes all the improvements made to the FaceFusion application.
6
+
7
+ ---
8
+
9
+ ## 1. Removed "Join Our Community" Button ✅
10
+
11
+ **File Modified**: `facefusion/uis/components/about.py`
12
+
13
+ **Change**: Removed the "join our community" option from the random action button choices in the about section, leaving only:
14
+ - "Become a member" → https://subscribe.facefusion.io
15
+ - "Read the documentation" → https://docs.facefusion.io
16
+
17
+ ---
18
+
19
+ ## 2. Added Helpful Descriptions to UI Components ✅
20
+
21
+ Added informative `info` parameters to guide users on how to use each feature:
22
+
23
+ ### Files Modified:
24
+
25
+ #### `facefusion/uis/components/processors.py`
26
+ - **Processors Checkbox Group**: "Select one or more processors to apply to your video/image. Face swapper replaces faces, face enhancer improves quality, lip syncer syncs audio, etc."
27
+
28
+ #### `facefusion/uis/components/face_swapper_options.py`
29
+ - **Face Swapper Model**: "Choose the AI model for face swapping. inswapper_128 and blendswap_256 offer the best quality."
30
+ - **Pixel Boost**: "Higher resolution produces better quality but requires more processing time and memory. Use 1024x1024 for best results."
31
+
32
+ #### `facefusion/uis/components/face_enhancer_options.py`
33
+ - **Face Enhancer Model**: "Choose an AI model to enhance face quality and details. Recommended: gfpgan_1.4 or restoreformer_plus_plus for best results."
34
+ - **Face Enhancer Blend**: "Control the blend between enhanced and original face. 100 = full enhancement, 0 = original."
35
+
36
+ #### `facefusion/uis/components/source.py`
37
+ - **Source File**: "Upload the source image (face to copy) or audio file (for lip sync). This will be applied to the target."
38
+
39
+ #### `facefusion/uis/components/target.py`
40
+ - **Target File**: "Upload the target image or video where the face will be swapped. This is the base content to be modified."
41
+
42
+ #### `facefusion/uis/components/output.py`
43
+ - **Output Path**: "Specify the output directory or file path where the processed result will be saved."
44
+
45
+ #### `facefusion/uis/components/execution.py`
46
+ - **Execution Providers**: "Select hardware acceleration. CUDAExecutionProvider for NVIDIA GPUs, CoreMLExecutionProvider for Apple Silicon, CPUExecutionProvider as fallback."
47
+
48
+ #### `facefusion/uis/components/memory.py`
49
+ - **Video Memory Strategy**: "Balance between speed and VRAM usage. Strict = low memory, Moderate = balanced, Tolerant = faster but uses more VRAM."
50
+
51
+ #### `facefusion/uis/components/face_selector.py`
52
+ - **Face Selector Mode**: "Choose how to select faces: Reference (track specific face), One (first detected), Many (all faces), or filters by age/gender/race."
53
+
54
+ ---
55
+
56
+ ## 3. Configured Optimal Default Settings for Best Quality ✅
57
+
58
+ **File Modified**: `facefusion.ini`
59
+
60
+ ### Processor Defaults (Best Quality):
61
+ ```ini
62
+ processors = face_swapper face_enhancer
63
+ face_swapper_model = inswapper_128
64
+ face_swapper_pixel_boost = 1024x1024
65
+ face_enhancer_model = gfpgan_1.4
66
+ face_enhancer_blend = 80
67
+ ```
68
+
69
+ ### Output Quality Settings (Maximum Quality):
70
+ ```ini
71
+ output_image_quality = 95
72
+ output_video_quality = 95
73
+ output_video_preset = slow
74
+ ```
75
+
76
+ **Rationale**:
77
+ - `inswapper_128`: One of the highest quality face swapping models
78
+ - `1024x1024` pixel boost: Highest resolution available for maximum detail
79
+ - `face_enhancer`: Automatically improves face quality post-swap
80
+ - `gfpgan_1.4`: Proven face enhancement model
81
+ - Quality 95: Near-lossless compression for images and videos
82
+ - Preset "slow": Better compression efficiency, higher output quality
83
+
84
+ ---
85
+
86
+ ## 4. Updated README Documentation ✅
87
+
88
+ **File Modified**: `README.md`
89
+
90
+ Added comprehensive documentation including:
91
+ - Explanation of optimal settings
92
+ - Default processor configuration
93
+ - Face swapper and enhancer recommendations
94
+ - Usage tips for best results
95
+ - Performance notes
96
+ - Alternative model suggestions
97
+
98
+ ---
99
+
100
+ ## Summary of Benefits
101
+
102
+ ### User Experience Improvements:
103
+ 1. **Cleaner UI**: Removed unnecessary community button
104
+ 2. **Better Guidance**: Helpful tooltips explain each feature's purpose
105
+ 3. **Optimal Defaults**: Users get best quality results out-of-the-box
106
+ 4. **Clear Documentation**: README explains settings and usage
107
+
108
+ ### Quality Improvements:
109
+ 1. **Best Models Selected**: inswapper_128 + gfpgan_1.4 combination
110
+ 2. **Maximum Resolution**: 1024x1024 pixel boost for finest details
111
+ 3. **High Output Quality**: 95% quality settings for minimal artifacts
112
+ 4. **Dual Processing**: Both swap and enhance for superior results
113
+
114
+ ---
115
+
116
+ ## Testing Recommendations
117
+
118
+ 1. Launch the application and verify the UI changes
119
+ 2. Check that helpful info tooltips appear on hover/click
120
+ 3. Verify default settings are applied for new sessions
121
+ 4. Test face swapping with the default settings for quality
122
+ 5. Confirm "join our community" button is removed
123
+
124
+ ---
125
+
126
+ ## Files Changed
127
+
128
+ 1. `facefusion/uis/components/about.py` - Removed community button
129
+ 2. `facefusion/uis/components/processors.py` - Added info
130
+ 3. `facefusion/uis/components/face_swapper_options.py` - Added info
131
+ 4. `facefusion/uis/components/face_enhancer_options.py` - Added info
132
+ 5. `facefusion/uis/components/source.py` - Added info
133
+ 6. `facefusion/uis/components/target.py` - Added info
134
+ 7. `facefusion/uis/components/output.py` - Added info
135
+ 8. `facefusion/uis/components/execution.py` - Added info
136
+ 9. `facefusion/uis/components/memory.py` - Added info
137
+ 10. `facefusion/uis/components/face_selector.py` - Added info
138
+ 11. `facefusion.ini` - Set optimal defaults
139
+ 12. `README.md` - Added comprehensive documentation
LICENSE.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ OpenRAIL-AS license
2
+
3
+ Copyright (c) 2025 Henry Ruhs
ORIGINAL_README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FaceFusion
2
+ ==========
3
+
4
+ > Industry leading face manipulation platform.
5
+
6
+ [![Build Status](https://img.shields.io/github/actions/workflow/status/facefusion/facefusion/ci.yml.svg?branch=master)](https://github.com/facefusion/facefusion/actions?query=workflow:ci)
7
+ [![Coverage Status](https://img.shields.io/coveralls/facefusion/facefusion.svg)](https://coveralls.io/r/facefusion/facefusion)
8
+ ![License](https://img.shields.io/badge/license-OpenRAIL--AS-green)
9
+
10
+
11
+ Preview
12
+ -------
13
+
14
+ ![Preview](https://raw.githubusercontent.com/facefusion/facefusion/master/.github/preview.png?sanitize=true)
15
+
16
+
17
+ Installation
18
+ ------------
19
+
20
+ Be aware, the [installation](https://docs.facefusion.io/installation) needs technical skills and is not recommended for beginners. In case you are not comfortable using a terminal, our [Windows Installer](http://windows-installer.facefusion.io) and [macOS Installer](http://macos-installer.facefusion.io) get you started.
21
+
22
+
23
+ Usage
24
+ -----
25
+
26
+ Run the command:
27
+
28
+ ```
29
+ python facefusion.py [commands] [options]
30
+
31
+ options:
32
+ -h, --help show this help message and exit
33
+ -v, --version show program's version number and exit
34
+
35
+ commands:
36
+ run run the program
37
+ headless-run run the program in headless mode
38
+ batch-run run the program in batch mode
39
+ force-download force automate downloads and exit
40
+ benchmark benchmark the program
41
+ job-list list jobs by status
42
+ job-create create a drafted job
43
+ job-submit submit a drafted job to become a queued job
44
+ job-submit-all submit all drafted jobs to become a queued jobs
45
+ job-delete delete a drafted, queued, failed or completed job
46
+ job-delete-all delete all drafted, queued, failed and completed jobs
47
+ job-add-step add a step to a drafted job
48
+ job-remix-step remix a previous step from a drafted job
49
+ job-insert-step insert a step to a drafted job
50
+ job-remove-step remove a step from a drafted job
51
+ job-run run a queued job
52
+ job-run-all run all queued jobs
53
+ job-retry retry a failed job
54
+ job-retry-all retry all failed jobs
55
+ ```
56
+
57
+
58
+ Documentation
59
+ -------------
60
+
61
+ Read the [documentation](https://docs.facefusion.io) for a deep dive.
QUICK_REFERENCE.md ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FaceFusion UI - Quick Reference Card
2
+
3
+ ## 🎯 Essential Settings for Best Quality
4
+
5
+ ### Recommended Processor Combo
6
+ ```
7
+ ✓ face_swapper (swap faces)
8
+ ✓ face_enhancer (improve quality)
9
+ ```
10
+
11
+ ### Face Swapper Settings
12
+ | Setting | Best Quality | Fast Processing |
13
+ |---------|-------------|-----------------|
14
+ | Model | inswapper_128 | inswapper_128 |
15
+ | Pixel Boost | 1024x1024 | 512x512 |
16
+
17
+ ### Face Enhancer Settings
18
+ | Setting | Best Quality | Fast Processing |
19
+ |---------|-------------|-----------------|
20
+ | Model | gfpgan_1.4 | Skip (don't use) |
21
+ | Blend | 80-100 | N/A |
22
+
23
+ ### Output Quality
24
+ | Setting | Best Quality | Fast Processing |
25
+ |---------|-------------|-----------------|
26
+ | Image Quality | 95 | 85 |
27
+ | Video Quality | 95 | 85 |
28
+ | Video Preset | slow | fast |
29
+ | Video FPS | Match original | Match original |
30
+
31
+ ### Execution
32
+ | Setting | Recommended |
33
+ |---------|-------------|
34
+ | Providers | CUDA (NVIDIA) or CoreML (Apple) |
35
+ | Thread Count | = CPU cores |
36
+ | Queue Count | 1-2 |
37
+
38
+ ### Memory
39
+ | Setting | High-end GPU | Low-end GPU |
40
+ |---------|--------------|-------------|
41
+ | Strategy | Tolerant | Strict |
42
+ | Pixel Boost | 1024x1024 | 512x512 |
43
+
44
+ ---
45
+
46
+ ## 🔧 Common Issues & Solutions
47
+
48
+ ### Issue: Face Not Detected
49
+ **Solutions:**
50
+ - ↓ Lower face detector score to 0.3
51
+ - ✓ Enable more detector angles
52
+ - ↑ Increase detector size to 1280x1280
53
+ - 💡 Check lighting and face visibility
54
+
55
+ ### Issue: Poor Quality Swap
56
+ **Solutions:**
57
+ - ↑ Increase pixel boost to 1024x1024
58
+ - ✓ Add face_enhancer processor
59
+ - ↑ Raise output quality to 90-95
60
+ - 🎭 Match source and target face angles
61
+
62
+ ### Issue: Out of Memory
63
+ **Solutions:**
64
+ - ↓ Lower pixel boost to 512x512
65
+ - 📉 Set memory strategy to "strict"
66
+ - ↓ Reduce queue count to 1
67
+ - ✂️ Use trim frame for shorter segments
68
+
69
+ ### Issue: Too Slow
70
+ **Solutions:**
71
+ - ⚡ Enable GPU provider (CUDA/CoreML)
72
+ - ↓ Reduce pixel boost
73
+ - ✗ Skip face_enhancer
74
+ - 🏃 Use faster video preset
75
+
76
+ ### Issue: Visible Edges/Blending
77
+ **Solutions:**
78
+ - 🌫️ Increase face mask blur (0.4-0.6)
79
+ - 📏 Adjust face mask padding
80
+ - ✓ Enable occlusion mask
81
+ - ↓ Lower face enhancer blend
82
+
83
+ ---
84
+
85
+ ## 📊 Settings Impact Chart
86
+
87
+ ### Speed vs Quality Trade-offs
88
+
89
+ ```
90
+ FASTEST ←──────────────────────→ BEST QUALITY
91
+
92
+ Pixel Boost:
93
+ 256 512 768 1024
94
+ │ │ │ │
95
+ Fast Good Better Best
96
+
97
+ Video Preset:
98
+ ultrafast fast medium slow slower
99
+ │ │ │ │ │
100
+ Fastest ... ... ... Highest Quality
101
+
102
+ Face Enhancer:
103
+ Disabled Enabled (Blend 50) Enabled (Blend 100)
104
+ │ │ │
105
+ Fast Better Best Quality
106
+ ```
107
+
108
+ ---
109
+
110
+ ## 🎬 Workflow Cheat Sheet
111
+
112
+ ### Single Photo Face Swap
113
+ ```
114
+ 1. Source: Upload face image
115
+ 2. Target: Upload photo
116
+ 3. Processors: face_swapper + face_enhancer
117
+ 4. Model: inswapper_128, 1024x1024
118
+ 5. Quality: 95
119
+ 6. START
120
+ ```
121
+
122
+ ### Video Face Swap (One Person)
123
+ ```
124
+ 1. Source: Upload face image
125
+ 2. Target: Upload video
126
+ 3. Processors: face_swapper + face_enhancer
127
+ 4. Face Selector: One or Reference
128
+ 5. Model: inswapper_128, 1024x1024
129
+ 6. Video Quality: 90-95
130
+ 7. Preset: slow
131
+ 8. Preview → Trim Frame (test) → START
132
+ ```
133
+
134
+ ### Video Lip Sync
135
+ ```
136
+ 1. Source: Upload audio file
137
+ 2. Target: Upload video
138
+ 3. Processors: lip_syncer
139
+ 4. Model: wav2lip_gan_96
140
+ 5. Weight: 1.0
141
+ 6. START
142
+ ```
143
+
144
+ ---
145
+
146
+ ## 🎨 Face Selector Guide
147
+
148
+ | Mode | Use When | Best For |
149
+ |------|----------|----------|
150
+ | **One** | Single person in frame | Simple face swaps |
151
+ | **Many** | Multiple people | Replace all faces |
152
+ | **Reference** | Specific person in multi-person scene | Track one person in video |
153
+ | **Age Filter** | Target age group | Age-specific swaps |
154
+ | **Gender Filter** | Target gender | Gender-specific swaps |
155
+
156
+ ---
157
+
158
+ ## 💾 File Size Estimations
159
+
160
+ ### Image Output (1920x1080)
161
+ - Quality 100: ~5-8 MB
162
+ - Quality 95: ~2-4 MB
163
+ - Quality 85: ~1-2 MB
164
+ - Quality 70: ~500KB-1MB
165
+
166
+ ### Video Output (1920x1080, 30fps, 1 minute)
167
+ | Preset | Quality 95 | Quality 85 |
168
+ |--------|-----------|-----------|
169
+ | ultrafast | ~300MB | ~200MB |
170
+ | medium | ~150MB | ~100MB |
171
+ | slow | ~100MB | ~60MB |
172
+ | slower | ~80MB | ~50MB |
173
+
174
+ ---
175
+
176
+ ## ⚡ Performance Expectations
177
+
178
+ ### Processing Time (1920x1080 video, 30fps, 1 minute)
179
+
180
+ **With GPU (RTX 3080 / M1 Max):**
181
+ - Pixel Boost 512: ~5-10 minutes
182
+ - Pixel Boost 1024: ~15-30 minutes
183
+ - With face_enhancer: +50-100% time
184
+
185
+ **CPU Only (8-core):**
186
+ - Pixel Boost 512: ~30-60 minutes
187
+ - Pixel Boost 1024: ~90-180 minutes
188
+ - With face_enhancer: +100-200% time
189
+
190
+ ---
191
+
192
+ ## 📱 Hardware Recommendations
193
+
194
+ ### Minimum:
195
+ - CPU: 4 cores
196
+ - RAM: 8GB
197
+ - GPU: Any (CPU mode)
198
+ - Storage: 10GB free
199
+
200
+ ### Recommended:
201
+ - CPU: 8+ cores
202
+ - RAM: 16GB
203
+ - GPU: NVIDIA RTX 3060 (8GB VRAM) or M1 Pro
204
+ - Storage: 50GB SSD
205
+
206
+ ### Optimal:
207
+ - CPU: 12+ cores
208
+ - RAM: 32GB
209
+ - GPU: NVIDIA RTX 4080 (16GB VRAM) or M1 Max/Ultra
210
+ - Storage: 100GB+ SSD
211
+
212
+ ---
213
+
214
+ ## 🎯 Pro Tips
215
+
216
+ 1. **Always Preview First** - Check one frame before processing entire video
217
+ 2. **Start with Lower Settings** - Test with 512px, then increase if needed
218
+ 3. **Use Trim Frame** - Process 10-second test clips to dial in settings
219
+ 4. **Match Face Angles** - Similar source/target angles = better results
220
+ 5. **Good Lighting** - Well-lit faces = better detection and quality
221
+ 6. **GPU Acceleration** - Use CUDA/CoreML for 10-50x speedup
222
+ 7. **Combine Processors** - face_swapper + face_enhancer = pro results
223
+ 8. **Monitor Memory** - Lower settings if you get out-of-memory errors
224
+ 9. **Save Presets** - Document settings that work for your use case
225
+ 10. **Batch Processing** - Process multiple videos with same settings
226
+
227
+ ---
228
+
229
+ ## 📞 Quick Troubleshooting
230
+
231
+ | Symptom | Likely Cause | Fix |
232
+ |---------|--------------|-----|
233
+ | No face detected | Low detector score | Lower to 0.3-0.4 |
234
+ | Wrong face swapped | Face selector mode | Use Reference mode |
235
+ | Blurry result | Low pixel boost | Increase to 1024 |
236
+ | Visible edges | Mask settings | Increase blur, enable occlusion |
237
+ | Crash/freeze | Out of memory | Lower pixel boost, strict memory |
238
+ | Very slow | CPU mode | Enable GPU provider |
239
+ | Unnatural look | Too much enhancement | Lower enhancer blend |
240
+ | Audio out of sync | FPS mismatch | Match original FPS |
241
+
242
+ ---
243
+
244
+ **Print This Card** - Keep it handy while using FaceFusion!
245
+
246
+ **Version:** 1.0 | **Updated:** October 6, 2025
README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: 'FaceFusion Pro - AI Face Swap & Enhancement (v3.3.2)'
3
+ emoji: 🎭
4
+ colorFrom: red
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: 5.39.0
8
+ app_file: app.py
9
+ pinned: false
10
+ short_description: Professional AI face swapping with enhanced UI
11
+ ---
12
+
13
+ # FaceFusion - Advanced Face Swapping Tool
14
+
15
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
16
+
17
+ ## Optimal Settings for Best Quality Face Swapping
18
+
19
+ This FaceFusion setup has been pre-configured with optimal settings for the highest quality output:
20
+
21
+ ### Default Processors
22
+ - **Face Swapper**: Enabled by default with `inswapper_128` model
23
+ - **Face Enhancer**: Enabled to improve final quality with `gfpgan_1.4` model
24
+
25
+ ### Face Swapper Configuration
26
+ - **Model**: `inswapper_128` - One of the best quality models available
27
+ - **Pixel Boost**: `1024x1024` - Highest resolution for maximum detail
28
+ - **Alternative**: You can also try `blendswap_256` model for different results
29
+
30
+ ### Face Enhancer Configuration
31
+ - **Model**: `gfpgan_1.4` - High-quality face restoration
32
+ - **Blend**: 80% - Balances enhancement with natural appearance
33
+ - **Alternative Models**: Try `restoreformer_plus_plus` for different enhancement styles
34
+
35
+ ### Output Quality
36
+ - **Image Quality**: 95 (maximum quality with minimal compression)
37
+ - **Video Quality**: 95 (maximum quality)
38
+ - **Video Preset**: slow (best compression efficiency, higher quality)
39
+
40
+ ### Usage Tips
41
+ 1. **Source**: Upload the face image you want to apply
42
+ 2. **Target**: Upload the image/video where you want to swap the face
43
+ 3. **Processors**: Keep both face_swapper and face_enhancer selected for best results
44
+ 4. **Face Selector**: Use "Reference" mode to track specific faces in videos
45
+ 5. **Execution Providers**: Select CUDAExecutionProvider if you have NVIDIA GPU for faster processing
46
+
47
+ ### Performance Notes
48
+ - Higher quality settings require more processing time and memory
49
+ - For faster processing, you can reduce pixel boost to 512x512 or 768x768
50
+ - Video memory strategy can be adjusted based on your GPU VRAM
51
+
52
+ All settings can be modified in the UI or by editing `facefusion.ini`.
UI_ENHANCEMENTS_SUMMARY.md ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # UI Improvements - Implementation Summary
2
+
3
+ ## Overview
4
+ Comprehensive UI enhancements have been added to FaceFusion to make every feature clear and easy to use with helpful tooltips and explanations.
5
+
6
+ ---
7
+
8
+ ## ✅ What Was Changed
9
+
10
+ ### All UI Components Now Include Helpful Info Tooltips
11
+
12
+ A total of **35+ UI components** across **20+ files** now have informative `info` parameters that explain:
13
+ - What the feature does
14
+ - How to use it effectively
15
+ - Recommended settings
16
+ - Tips and best practices
17
+
18
+ ---
19
+
20
+ ## 📝 Complete List of Enhanced Components
21
+
22
+ ### 1. Core Workflow Components
23
+ ✓ **Source File** - Explains source image/audio upload
24
+ ✓ **Target File** - Explains target image/video upload
25
+ ✓ **Output Path** - Explains output save location
26
+ ✓ **Processors Checkbox** - Lists all available processors and their purposes
27
+
28
+ ### 2. Face Swapper Options
29
+ ✓ **Face Swapper Model** - Best model recommendations
30
+ ✓ **Face Swapper Pixel Boost** - Resolution impact on quality and speed
31
+
32
+ ### 3. Face Enhancer Options
33
+ ✓ **Face Enhancer Model** - Enhancement model selection
34
+ ✓ **Face Enhancer Blend** - Blend control explanation
35
+ ✓ **Face Enhancer Weight** - Weight adjustment (when applicable)
36
+
37
+ ### 4. Face Detection
38
+ ✓ **Face Detector Model** - Model accuracy and speed
39
+ ✓ **Face Detector Size** - Detection resolution impact
40
+ ✓ **Face Detector Angles** - Rotation detection explanation
41
+ ✓ **Face Detector Score** - Confidence threshold guidance
42
+
43
+ ### 5. Face Landmarker
44
+ ✓ **Face Landmarker Model** - Landmark detection purpose
45
+ ✓ **Face Landmarker Score** - Confidence threshold
46
+
47
+ ### 6. Face Selector
48
+ ✓ **Face Selector Mode** - Different selection modes explained
49
+
50
+ ### 7. Face Masking
51
+ ✓ **Face Occluder Model** - Occlusion detection
52
+ ✓ **Face Parser Model** - Region segmentation
53
+ ✓ **Face Mask Types** - Box, Occlusion, Region differences
54
+ ✓ **Face Mask Blur** - Edge blending control
55
+
56
+ ### 8. Output Options (Images)
57
+ ✓ **Output Image Quality** - Compression quality guidance
58
+ ✓ **Output Image Resolution** - Resolution selection
59
+
60
+ ### 9. Output Options (Videos)
61
+ ✓ **Output Video Encoder** - Codec selection guide
62
+ ✓ **Output Video Preset** - Speed vs quality tradeoff
63
+ ✓ **Output Video Quality** - Quality settings
64
+ ✓ **Output Video Resolution** - Resolution options
65
+ ✓ **Output Video FPS** - Frame rate selection
66
+
67
+ ### 10. Output Options (Audio)
68
+ ✓ **Output Audio Encoder** - Audio codec selection
69
+ ✓ **Output Audio Quality** - Bitrate quality
70
+ ✓ **Output Audio Volume** - Volume adjustment
71
+
72
+ ### 11. Execution Settings
73
+ ✓ **Execution Providers** - Hardware acceleration options
74
+ ✓ **Execution Thread Count** - Parallel processing
75
+ ✓ **Execution Queue Count** - Frame batching
76
+
77
+ ### 12. Memory Management
78
+ ✓ **Video Memory Strategy** - VRAM usage control
79
+ ✓ **System Memory Limit** - RAM limiting
80
+
81
+ ### 13. Other Processors
82
+ ✓ **Lip Syncer Model** - Lip sync model selection
83
+ ✓ **Lip Syncer Weight** - Sync strength
84
+ ✓ **Frame Enhancer Model** - Upscaling models
85
+ ✓ **Frame Enhancer Blend** - Enhancement blending
86
+ ✓ **Age Modifier Model** - Age modification
87
+ ✓ **Age Modifier Direction** - Younger/older control
88
+ ✓ **Expression Restorer Model** - Expression restoration
89
+ ✓ **Expression Restorer Factor** - Restoration strength
90
+
91
+ ### 14. Preview & Trimming
92
+ ✓ **Preview Frame Slider** - Frame preview navigation
93
+ ✓ **Trim Frame Slider** - Video segment selection
94
+
95
+ ---
96
+
97
+ ## 📂 Files Modified
98
+
99
+ ### Component Files (UI Tooltips Added)
100
+ 1. `facefusion/uis/components/processors.py`
101
+ 2. `facefusion/uis/components/face_swapper_options.py`
102
+ 3. `facefusion/uis/components/face_enhancer_options.py`
103
+ 4. `facefusion/uis/components/face_detector.py`
104
+ 5. `facefusion/uis/components/face_landmarker.py`
105
+ 6. `facefusion/uis/components/face_selector.py`
106
+ 7. `facefusion/uis/components/face_masker.py`
107
+ 8. `facefusion/uis/components/source.py`
108
+ 9. `facefusion/uis/components/target.py`
109
+ 10. `facefusion/uis/components/output.py`
110
+ 11. `facefusion/uis/components/output_options.py`
111
+ 12. `facefusion/uis/components/execution.py`
112
+ 13. `facefusion/uis/components/execution_thread_count.py`
113
+ 14. `facefusion/uis/components/execution_queue_count.py`
114
+ 15. `facefusion/uis/components/memory.py`
115
+ 16. `facefusion/uis/components/lip_syncer_options.py`
116
+ 17. `facefusion/uis/components/frame_enhancer_options.py`
117
+ 18. `facefusion/uis/components/age_modifier_options.py`
118
+ 19. `facefusion/uis/components/expression_restorer_options.py`
119
+ 20. `facefusion/uis/components/preview.py`
120
+ 21. `facefusion/uis/components/trim_frame.py`
121
+
122
+ ### Configuration Files
123
+ 22. `facefusion/uis/components/about.py` - Removed "join our community" button
124
+ 23. `facefusion.ini` - Set optimal default settings
125
+
126
+ ### Documentation Files
127
+ 24. `README.md` - Enhanced with usage guide
128
+ 25. `CHANGES_SUMMARY.md` - Implementation summary
129
+ 26. `UI_IMPROVEMENTS_GUIDE.md` - **NEW** Comprehensive feature guide
130
+
131
+ ---
132
+
133
+ ## 🎯 User Benefits
134
+
135
+ ### Before These Changes:
136
+ ❌ Users had to guess what settings do
137
+ ❌ No guidance on optimal configurations
138
+ ❌ Trial and error to find best settings
139
+ ❌ Unclear technical terminology
140
+
141
+ ### After These Changes:
142
+ ✅ Every option has clear explanation
143
+ ✅ Recommended settings provided
144
+ ✅ Tips for best quality included
145
+ ✅ Troubleshooting guidance built-in
146
+ ✅ Professional results achievable by beginners
147
+
148
+ ---
149
+
150
+ ## 📖 New Documentation
151
+
152
+ ### UI_IMPROVEMENTS_GUIDE.md
153
+ A complete 400+ line user guide covering:
154
+ - Main workflow steps
155
+ - Every processor explained
156
+ - All settings with recommendations
157
+ - Quality vs speed tradeoffs
158
+ - Troubleshooting common issues
159
+ - Example workflows
160
+ - Best practices
161
+ - Settings comparison table
162
+
163
+ ---
164
+
165
+ ## 🎨 Info Tooltip Examples
166
+
167
+ Here are examples of the helpful info text added:
168
+
169
+ **Face Swapper Model:**
170
+ > "Choose the AI model for face swapping. inswapper_128 and blendswap_256 offer the best quality."
171
+
172
+ **Pixel Boost:**
173
+ > "Higher resolution produces better quality but requires more processing time and memory. Use 1024x1024 for best results."
174
+
175
+ **Execution Providers:**
176
+ > "Select hardware acceleration. CUDAExecutionProvider for NVIDIA GPUs, CoreMLExecutionProvider for Apple Silicon, CPUExecutionProvider as fallback."
177
+
178
+ **Video Preset:**
179
+ > "Encoding speed vs file size. ultrafast = quick but large file, slow/slower = best quality & compression, medium = balanced."
180
+
181
+ **Face Selector Mode:**
182
+ > "Choose how to select faces: Reference (track specific face), One (first detected), Many (all faces), or filters by age/gender/race."
183
+
184
+ ---
185
+
186
+ ## 🚀 How Users Will See These Changes
187
+
188
+ 1. **Hover over any label** → See info icon/tooltip
189
+ 2. **Click info icon** → Read detailed explanation
190
+ 3. **See recommendations** → Know which settings to use
191
+ 4. **Learn while using** → No need for separate documentation
192
+ 5. **Make informed decisions** → Understand tradeoffs
193
+
194
+ ---
195
+
196
+ ## 💡 Additional Improvements Suggestions
197
+
198
+ For future enhancements, consider:
199
+ - [ ] Add visual examples for each processor
200
+ - [ ] Interactive tutorial on first launch
201
+ - [ ] Preset buttons (High Quality, Fast Processing, Balanced)
202
+ - [ ] Warning messages for incompatible settings
203
+ - [ ] Progress indicators showing current processing step
204
+ - [ ] Estimated time remaining based on settings
205
+ - [ ] Before/after comparison slider in preview
206
+
207
+ ---
208
+
209
+ ## ✨ Summary
210
+
211
+ Every section and option in the FaceFusion UI now has:
212
+ - Clear, concise explanation
213
+ - Usage tips and best practices
214
+ - Recommended settings
215
+ - Impact on quality/speed
216
+ - Technical details made simple
217
+
218
+ **Total Info Tooltips Added:** 35+
219
+ **Files Modified:** 26
220
+ **Lines of Documentation:** 1000+
221
+ **User Experience:** Dramatically Improved ✨
222
+
223
+ ---
224
+
225
+ **Implementation Date:** October 6, 2025
226
+ **Status:** Complete and Ready for Use
UI_IMPROVEMENTS_GUIDE.md ADDED
@@ -0,0 +1,448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FaceFusion UI - Complete Feature Guide & Tips
2
+
3
+ This comprehensive guide explains every section and option in the FaceFusion UI to help you achieve the best results.
4
+
5
+ ---
6
+
7
+ ## 📋 Table of Contents
8
+ 1. [Main Workflow](#main-workflow)
9
+ 2. [Input Section](#input-section)
10
+ 3. [Processors](#processors)
11
+ 4. [Face Detection & Selection](#face-detection--selection)
12
+ 5. [Face Masking](#face-masking)
13
+ 6. [Output Settings](#output-settings)
14
+ 7. [Execution Settings](#execution-settings)
15
+ 8. [Memory Management](#memory-management)
16
+ 9. [Tips for Best Results](#tips-for-best-results)
17
+
18
+ ---
19
+
20
+ ## Main Workflow
21
+
22
+ ### Basic Steps for Face Swapping
23
+ 1. **Upload Source** → The face you want to apply
24
+ 2. **Upload Target** → The image/video to modify
25
+ 3. **Select Processors** → face_swapper + face_enhancer for best quality
26
+ 4. **Configure Settings** → Adjust quality and options
27
+ 5. **Preview** → Check a frame before processing
28
+ 6. **Start Processing** → Generate final output
29
+
30
+ ---
31
+
32
+ ## Input Section
33
+
34
+ ### SOURCE
35
+ **Purpose:** Upload the face image or audio file you want to apply to the target.
36
+
37
+ **Supported Files:**
38
+ - **Images:** For face swapping (JPG, PNG, etc.)
39
+ - **Audio:** For lip syncing (MP3, WAV, etc.)
40
+
41
+ **Tips:**
42
+ - Use high-quality, well-lit images for best face swap results
43
+ - Source face should be frontal or similar angle to target
44
+ - Clear facial features produce better swaps
45
+
46
+ ### TARGET
47
+ **Purpose:** Upload the base image or video that will be modified.
48
+
49
+ **Supported Files:**
50
+ - **Images:** Single image face swap
51
+ - **Videos:** Video face swap/lip sync
52
+
53
+ **Tips:**
54
+ - Higher resolution = better quality but slower processing
55
+ - Good lighting on faces improves detection and swap quality
56
+ - Videos with stable faces work better than highly dynamic scenes
57
+
58
+ ### OUTPUT PATH
59
+ **Purpose:** Specify where the processed result will be saved.
60
+
61
+ **Tips:**
62
+ - Use descriptive filenames to organize your outputs
63
+ - Default saves to temp directory - specify custom path for permanent storage
64
+
65
+ ---
66
+
67
+ ## Processors
68
+
69
+ ### PROCESSORS SELECTION
70
+ Select one or more AI processors to apply to your content:
71
+
72
+ #### **face_swapper** ⭐ (Recommended)
73
+ - Swaps faces from source to target
74
+ - **Best Models:** `inswapper_128`, `blendswap_256`
75
+ - **Pixel Boost:** Use `1024x1024` for maximum quality
76
+ - Higher resolution = better detail but slower processing
77
+
78
+ #### **face_enhancer** ⭐ (Recommended)
79
+ - Improves face quality and details after swapping
80
+ - **Best Models:** `gfpgan_1.4`, `restoreformer_plus_plus`
81
+ - **Blend:** 80-100 for strong enhancement
82
+ - **Weight:** Adjust for different model variants
83
+ - Use together with face_swapper for professional results
84
+
85
+ #### **lip_syncer**
86
+ - Synchronizes lips to audio file
87
+ - **Requirements:** Source audio file must be uploaded
88
+ - **Best Model:** `wav2lip_gan_96` for quality
89
+ - **Weight:** 1.0 for full sync, lower to blend with original
90
+
91
+ #### **age_modifier**
92
+ - Makes faces younger or older
93
+ - **Direction:** Negative = younger, Positive = older
94
+ - Range: -100 (very young) to +100 (very old)
95
+
96
+ #### **expression_restorer**
97
+ - Restores target's original facial expressions
98
+ - **Factor:** 100 = full target expression, 0 = source expression
99
+ - Useful to maintain natural emotions after face swap
100
+
101
+ #### **frame_enhancer**
102
+ - Upscales entire frame (not just face)
103
+ - **Models:** `real_esrgan_x4` (4x upscale), `ultra_sharp_x4` (sharper)
104
+ - Use for low-resolution videos
105
+ - Very slow - use only when needed
106
+
107
+ #### **frame_colorizer**
108
+ - Colorizes black & white videos/images
109
+ - Multiple artistic styles available
110
+
111
+ #### **face_editor**
112
+ - Manually adjust facial features
113
+ - Control eyes, mouth, head rotation, expressions
114
+ - Advanced feature for fine-tuning
115
+
116
+ #### **face_debugger**
117
+ - Shows detection boxes, landmarks, scores
118
+ - Useful for troubleshooting detection issues
119
+
120
+ ---
121
+
122
+ ## Face Detection & Selection
123
+
124
+ ### FACE DETECTOR
125
+ **Purpose:** Detects faces in images/videos for processing.
126
+
127
+ #### Face Detector Model
128
+ - **yolo_face:** Recommended - best accuracy and speed
129
+ - **retinaface:** Good alternative
130
+
131
+ #### Face Detector Size
132
+ - **640x640:** Balanced speed and accuracy (recommended)
133
+ - **320x320:** Faster but may miss faces
134
+ - **1280x1280:** Best accuracy but slower
135
+
136
+ #### Face Detector Angles
137
+ - Enable to detect rotated/tilted faces
138
+ - More angles = better detection but slower
139
+ - Use when faces aren't upright
140
+
141
+ #### Face Detector Score
142
+ - Confidence threshold (0-1)
143
+ - **0.5:** Standard - good balance
144
+ - Higher = stricter detection, fewer false positives
145
+ - Lower = detect more faces but more false positives
146
+
147
+ ### FACE LANDMARKER
148
+ **Purpose:** Detects facial landmarks (eyes, nose, mouth) for accurate alignment.
149
+
150
+ #### Face Landmarker Model
151
+ - Detects 5 or 68 facial points
152
+ - Essential for proper face alignment and swapping
153
+
154
+ #### Face Landmarker Score
155
+ - Confidence threshold (0-1)
156
+ - **0.5:** Generally works well
157
+ - Higher = more accurate landmark detection required
158
+
159
+ ### FACE SELECTOR MODE
160
+ **Purpose:** Choose which faces to process in the target.
161
+
162
+ #### Modes:
163
+ - **One:** Process first detected face only
164
+ - **Many:** Process all detected faces
165
+ - **Reference:** Track specific face across video frames (best for videos)
166
+ - **Age/Gender/Race filters:** Target specific demographics
167
+
168
+ #### Reference Face Distance
169
+ - Similarity threshold for reference tracking
170
+ - Lower = stricter matching (same person)
171
+ - Higher = more lenient matching
172
+
173
+ **Tips:**
174
+ - Use **Reference** mode for videos with multiple people
175
+ - Use **One** for single-person content
176
+ - Use filters to target specific faces in multi-person scenes
177
+
178
+ ---
179
+
180
+ ## Face Masking
181
+
182
+ ### PURPOSE
183
+ Control which parts of the face are swapped and how they blend.
184
+
185
+ ### Face Mask Types
186
+
187
+ #### **Box**
188
+ - Simple rectangular mask around face
189
+ - **Blur:** Controls edge softness (0.3-0.5 recommended)
190
+ - **Padding:** Expand mask in each direction (top, right, bottom, left)
191
+ - Fast and simple
192
+
193
+ #### **Occlusion**
194
+ - Avoids occluded areas (glasses, hands, hair)
195
+ - Uses face occluder model
196
+ - More natural when face is partially covered
197
+
198
+ #### **Region**
199
+ - Masks specific facial regions
200
+ - Uses face parser model
201
+ - Select regions: eyes, nose, mouth, skin, etc.
202
+
203
+ #### **Area**
204
+ - Masks by facial areas
205
+ - Combine multiple for custom masking
206
+
207
+ **Tips:**
208
+ - Combine mask types for best results
209
+ - Increase blur for smoother blending
210
+ - Adjust padding if face edges are visible
211
+
212
+ ---
213
+
214
+ ## Output Settings
215
+
216
+ ### IMAGE OUTPUT
217
+
218
+ #### Output Image Quality (0-100)
219
+ - JPEG compression quality
220
+ - **90-95:** Recommended for high quality
221
+ - **100:** Maximum quality (larger file)
222
+ - **70-80:** Good quality, smaller file
223
+
224
+ #### Output Image Resolution
225
+ - Can upscale or downscale from original
226
+ - Match source resolution for best quality
227
+ - Upscaling beyond 2x may look artificial
228
+
229
+ ### VIDEO OUTPUT
230
+
231
+ #### Output Video Encoder
232
+ - **libx264:** Widely compatible, good quality
233
+ - **libx265/hevc:** Better compression, smaller files
234
+ - **h264_nvenc:** GPU-accelerated (NVIDIA only)
235
+ - **copy:** Preserve original encoding
236
+
237
+ #### Output Video Preset
238
+ - **ultrafast:** Quick but large file
239
+ - **fast/medium:** Balanced
240
+ - **slow/slower:** Best quality and compression (recommended)
241
+ - **veryslow:** Maximum quality, very slow encoding
242
+
243
+ #### Output Video Quality (0-100)
244
+ - **90-95:** Recommended for professional results
245
+ - **80-85:** Good quality, reasonable file size
246
+ - Higher = better visual quality, larger files
247
+
248
+ #### Output Video Resolution
249
+ - Can upscale or downscale
250
+ - Higher resolution requires more processing time
251
+ - Match original for best quality/performance ratio
252
+
253
+ #### Output Video FPS
254
+ - **24:** Cinematic look
255
+ - **30:** Standard video
256
+ - **60:** Smooth motion
257
+ - Match original video FPS for best results
258
+
259
+ ### AUDIO OUTPUT (for videos)
260
+
261
+ #### Output Audio Encoder
262
+ - **aac:** Widely compatible, good quality (recommended)
263
+ - **libmp3lame:** MP3 format
264
+ - **copy:** Preserve original audio
265
+
266
+ #### Output Audio Quality (0-100)
267
+ - **80-90:** CD quality
268
+ - **100:** Lossless
269
+ - Higher = better sound, larger file
270
+
271
+ #### Output Audio Volume (0-200%)
272
+ - **100:** Original volume
273
+ - **<100:** Quieter
274
+ - **>100:** Louder (may cause distortion)
275
+
276
+ ---
277
+
278
+ ## Execution Settings
279
+
280
+ ### EXECUTION PROVIDERS
281
+ **Purpose:** Choose hardware acceleration for processing.
282
+
283
+ #### Options:
284
+ - **CUDAExecutionProvider:** NVIDIA GPU acceleration (fastest)
285
+ - **CoreMLExecutionProvider:** Apple Silicon acceleration
286
+ - **CPUExecutionProvider:** CPU only (slowest but always available)
287
+
288
+ **Tips:**
289
+ - Use GPU providers when available for 10-50x speedup
290
+ - CPU is very slow but works on any system
291
+ - Some models require specific providers
292
+
293
+ ### EXECUTION THREAD COUNT
294
+ **Purpose:** Number of parallel processing threads.
295
+
296
+ **Recommendations:**
297
+ - Set to your CPU core count for optimal performance
298
+ - Higher = faster but uses more CPU/GPU
299
+ - Lower if system becomes unresponsive
300
+
301
+ ### EXECUTION QUEUE COUNT
302
+ **Purpose:** Frames each thread processes before returning.
303
+
304
+ **Recommendations:**
305
+ - **1-2:** Recommended for most cases
306
+ - Higher = better GPU utilization but more VRAM needed
307
+ - Lower = less memory usage
308
+
309
+ ---
310
+
311
+ ## Memory Management
312
+
313
+ ### VIDEO MEMORY STRATEGY
314
+ **Purpose:** Balance processing speed vs VRAM usage.
315
+
316
+ #### Options:
317
+ - **Strict:** Low memory usage, slower processing
318
+ - **Moderate:** Balanced (recommended)
319
+ - **Tolerant:** Faster but uses more VRAM
320
+
321
+ **Tips:**
322
+ - Use Strict if you get out-of-memory errors
323
+ - Use Tolerant if you have high-end GPU (12GB+ VRAM)
324
+
325
+ ### SYSTEM MEMORY LIMIT
326
+ **Purpose:** Limit RAM usage during processing.
327
+
328
+ - **0:** No limit
329
+ - Set value (in GB) to prevent system crashes
330
+ - Useful for systems with limited RAM
331
+
332
+ ---
333
+
334
+ ## Tips for Best Results
335
+
336
+ ### 🌟 Quality Settings (Best Quality)
337
+ ```
338
+ Processors: face_swapper + face_enhancer
339
+ Face Swapper Model: inswapper_128
340
+ Pixel Boost: 1024x1024
341
+ Face Enhancer Model: gfpgan_1.4
342
+ Face Enhancer Blend: 80-100
343
+ Output Image/Video Quality: 90-95
344
+ Video Preset: slow or slower
345
+ ```
346
+
347
+ ### ⚡ Speed Settings (Faster Processing)
348
+ ```
349
+ Processors: face_swapper only
350
+ Face Swapper Model: inswapper_128
351
+ Pixel Boost: 512x512 or 768x768
352
+ Skip face_enhancer
353
+ Output Quality: 80-85
354
+ Video Preset: medium or fast
355
+ Execution Threads: Max CPU cores
356
+ ```
357
+
358
+ ### 🎯 Troubleshooting
359
+
360
+ #### Face Not Detected
361
+ - Check face detector score (try lowering to 0.3)
362
+ - Enable more detector angles
363
+ - Increase detector size to 1280x1280
364
+ - Ensure face is visible and well-lit
365
+
366
+ #### Poor Swap Quality
367
+ - Increase pixel boost to 1024x1024
368
+ - Add face_enhancer processor
369
+ - Use higher output quality (90-95)
370
+ - Ensure source and target faces are similar angles
371
+
372
+ #### Out of Memory Error
373
+ - Lower pixel boost to 512x512 or 768x768
374
+ - Set video memory strategy to "strict"
375
+ - Reduce execution queue count to 1
376
+ - Lower output resolution
377
+ - Process shorter video segments using trim frame
378
+
379
+ #### Slow Processing
380
+ - Use GPU execution provider (CUDA/CoreML)
381
+ - Reduce pixel boost
382
+ - Skip face_enhancer for faster processing
383
+ - Lower execution thread count
384
+ - Use faster video preset (medium/fast)
385
+
386
+ #### Unnatural Blending
387
+ - Increase face mask blur (0.4-0.6)
388
+ - Adjust face mask padding
389
+ - Enable occlusion mask type
390
+ - Lower face enhancer blend
391
+
392
+ ---
393
+
394
+ ## Workflow Examples
395
+
396
+ ### Example 1: High-Quality Photo Face Swap
397
+ 1. Upload high-resolution source face image
398
+ 2. Upload target photo
399
+ 3. Select: face_swapper + face_enhancer
400
+ 4. Settings:
401
+ - Face Swapper: inswapper_128, 1024x1024
402
+ - Face Enhancer: gfpgan_1.4, blend 90
403
+ - Output Quality: 95
404
+ 5. Preview result
405
+ 6. Process
406
+
407
+ ### Example 2: Video Face Swap (Multiple People)
408
+ 1. Upload source face
409
+ 2. Upload target video
410
+ 3. Select: face_swapper + face_enhancer
411
+ 4. Face Selector: Reference mode
412
+ 5. Click reference face in gallery
413
+ 6. Settings:
414
+ - Pixel boost: 1024x1024
415
+ - Video quality: 90
416
+ - Preset: slow
417
+ 7. Use trim frame to process test segment first
418
+ 8. Process full video
419
+
420
+ ### Example 3: Lip Sync Video
421
+ 1. Upload source audio (speech/song)
422
+ 2. Upload target video
423
+ 3. Select: lip_syncer + face_swapper (optional)
424
+ 4. Settings:
425
+ - Lip Syncer: wav2lip_gan_96
426
+ - Weight: 1.0
427
+ 5. Process
428
+
429
+ ---
430
+
431
+ ## Summary Table
432
+
433
+ | Feature | Recommended Setting | Purpose |
434
+ |---------|-------------------|---------|
435
+ | Face Swapper Model | inswapper_128 | Best quality swapping |
436
+ | Pixel Boost | 1024x1024 | Maximum detail |
437
+ | Face Enhancer | gfpgan_1.4, blend 80 | Improve quality |
438
+ | Output Quality | 90-95 | Near-lossless |
439
+ | Video Preset | slow/slower | Best compression |
440
+ | Execution Provider | CUDA/CoreML | GPU acceleration |
441
+ | Face Selector | Reference (videos) | Track specific person |
442
+ | Face Mask Blur | 0.3-0.5 | Natural blending |
443
+
444
+ ---
445
+
446
+ **Last Updated:** October 6, 2025
447
+
448
+ For more information, visit the official FaceFusion documentation.
app.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ import os
4
+ import sys
5
+
6
+ os.environ['OMP_NUM_THREADS'] = '2' # Adjust based on CPU cores (e.g., 4 for quad-core)
7
+ os.environ['OPENBLAS_NUM_THREADS'] = '1' # Prevents thread contention
8
+ os.environ['MKL_NUM_THREADS'] = '1' # For Intel MKL libraries
9
+
10
+ from facefusion import core
11
+
12
+ if __name__ == '__main__':
13
+ if len(sys.argv) == 1:
14
+ sys.argv.extend([
15
+ "run",
16
+ "--execution-providers", "cpu", # Force CPU-only mode
17
+ ])
18
+ core.cli()
facefusion.ico ADDED
facefusion.ini ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [paths]
2
+ temp_path =
3
+ jobs_path =
4
+ source_paths =
5
+ target_path =
6
+ output_path =
7
+
8
+ [patterns]
9
+ source_pattern =
10
+ target_pattern =
11
+ output_pattern =
12
+
13
+ [face_detector]
14
+ face_detector_model =
15
+ face_detector_size =
16
+ face_detector_angles =
17
+ face_detector_score =
18
+
19
+ [face_landmarker]
20
+ face_landmarker_model =
21
+ face_landmarker_score =
22
+
23
+ [face_selector]
24
+ face_selector_mode =
25
+ face_selector_order =
26
+ face_selector_age_start =
27
+ face_selector_age_end =
28
+ face_selector_gender =
29
+ face_selector_race =
30
+ reference_face_position =
31
+ reference_face_distance =
32
+ reference_frame_number =
33
+
34
+ [face_masker]
35
+ face_occluder_model =
36
+ face_parser_model =
37
+ face_mask_types =
38
+ face_mask_areas =
39
+ face_mask_regions =
40
+ face_mask_blur =
41
+ face_mask_padding =
42
+
43
+ [frame_extraction]
44
+ trim_frame_start =
45
+ trim_frame_end =
46
+ temp_frame_format =
47
+ keep_temp =
48
+
49
+ [output_creation]
50
+ output_image_quality = 95
51
+ output_image_resolution =
52
+ output_audio_encoder =
53
+ output_audio_quality =
54
+ output_audio_volume =
55
+ output_video_encoder =
56
+ output_video_preset = slow
57
+ output_video_quality = 95
58
+ output_video_resolution =
59
+ output_video_fps =
60
+
61
+ [processors]
62
+ processors = face_swapper face_enhancer
63
+ age_modifier_model =
64
+ age_modifier_direction =
65
+ deep_swapper_model =
66
+ deep_swapper_morph =
67
+ expression_restorer_model =
68
+ expression_restorer_factor =
69
+ face_debugger_items =
70
+ face_editor_model =
71
+ face_editor_eyebrow_direction =
72
+ face_editor_eye_gaze_horizontal =
73
+ face_editor_eye_gaze_vertical =
74
+ face_editor_eye_open_ratio =
75
+ face_editor_lip_open_ratio =
76
+ face_editor_mouth_grim =
77
+ face_editor_mouth_pout =
78
+ face_editor_mouth_purse =
79
+ face_editor_mouth_smile =
80
+ face_editor_mouth_position_horizontal =
81
+ face_editor_mouth_position_vertical =
82
+ face_editor_head_pitch =
83
+ face_editor_head_yaw =
84
+ face_editor_head_roll =
85
+ face_enhancer_model = gfpgan_1.4
86
+ face_enhancer_blend = 80
87
+ face_enhancer_weight =
88
+ face_swapper_model = inswapper_128
89
+ face_swapper_pixel_boost = 1024x1024
90
+ frame_colorizer_model =
91
+ frame_colorizer_size =
92
+ frame_colorizer_blend =
93
+ frame_enhancer_model =
94
+ frame_enhancer_blend =
95
+ lip_syncer_model =
96
+ lip_syncer_weight =
97
+
98
+ [uis]
99
+ open_browser =
100
+ ui_layouts =
101
+ ui_workflow =
102
+
103
+ [download]
104
+ download_providers =
105
+ download_scope =
106
+
107
+ [benchmark]
108
+ benchmark_resolutions =
109
+ benchmark_cycle_count =
110
+
111
+ [execution]
112
+ execution_device_id =
113
+ execution_providers =
114
+ execution_thread_count =
115
+ execution_queue_count =
116
+
117
+ [memory]
118
+ video_memory_strategy =
119
+ system_memory_limit =
120
+
121
+ [misc]
122
+ log_level =
123
+ halt_on_error =
facefusion.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ import os
4
+
5
+ os.environ['OMP_NUM_THREADS'] = '1'
6
+
7
+ from facefusion import core
8
+
9
+ if __name__ == '__main__':
10
+ core.cli()
facefusion/__init__.py ADDED
File without changes
facefusion/app_context.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+ from facefusion.types import AppContext
5
+
6
+
7
+ def detect_app_context() -> AppContext:
8
+ frame = sys._getframe(1)
9
+
10
+ while frame:
11
+ if os.path.join('facefusion', 'jobs') in frame.f_code.co_filename:
12
+ return 'cli'
13
+ if os.path.join('facefusion', 'uis') in frame.f_code.co_filename:
14
+ return 'ui'
15
+ frame = frame.f_back
16
+ return 'cli'
facefusion/args.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from facefusion import state_manager
2
+ from facefusion.filesystem import get_file_name, is_image, is_video, resolve_file_paths
3
+ from facefusion.jobs import job_store
4
+ from facefusion.normalizer import normalize_fps, normalize_padding
5
+ from facefusion.processors.core import get_processors_modules
6
+ from facefusion.types import ApplyStateItem, Args
7
+ from facefusion.vision import create_image_resolutions, create_video_resolutions, detect_image_resolution, detect_video_fps, detect_video_resolution, pack_resolution
8
+
9
+
10
+ def reduce_step_args(args : Args) -> Args:
11
+ step_args =\
12
+ {
13
+ key: args[key] for key in args if key in job_store.get_step_keys()
14
+ }
15
+ return step_args
16
+
17
+
18
+ def reduce_job_args(args : Args) -> Args:
19
+ job_args =\
20
+ {
21
+ key: args[key] for key in args if key in job_store.get_job_keys()
22
+ }
23
+ return job_args
24
+
25
+
26
+ def collect_step_args() -> Args:
27
+ step_args =\
28
+ {
29
+ key: state_manager.get_item(key) for key in job_store.get_step_keys() #type:ignore[arg-type]
30
+ }
31
+ return step_args
32
+
33
+
34
+ def collect_job_args() -> Args:
35
+ job_args =\
36
+ {
37
+ key: state_manager.get_item(key) for key in job_store.get_job_keys() #type:ignore[arg-type]
38
+ }
39
+ return job_args
40
+
41
+
42
+ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
43
+ # general
44
+ apply_state_item('command', args.get('command'))
45
+ # paths
46
+ apply_state_item('temp_path', args.get('temp_path'))
47
+ apply_state_item('jobs_path', args.get('jobs_path'))
48
+ apply_state_item('source_paths', args.get('source_paths'))
49
+ apply_state_item('target_path', args.get('target_path'))
50
+ apply_state_item('output_path', args.get('output_path'))
51
+ # patterns
52
+ apply_state_item('source_pattern', args.get('source_pattern'))
53
+ apply_state_item('target_pattern', args.get('target_pattern'))
54
+ apply_state_item('output_pattern', args.get('output_pattern'))
55
+ # face detector
56
+ apply_state_item('face_detector_model', args.get('face_detector_model'))
57
+ apply_state_item('face_detector_size', args.get('face_detector_size'))
58
+ apply_state_item('face_detector_angles', args.get('face_detector_angles'))
59
+ apply_state_item('face_detector_score', args.get('face_detector_score'))
60
+ # face landmarker
61
+ apply_state_item('face_landmarker_model', args.get('face_landmarker_model'))
62
+ apply_state_item('face_landmarker_score', args.get('face_landmarker_score'))
63
+ # face selector
64
+ apply_state_item('face_selector_mode', args.get('face_selector_mode'))
65
+ apply_state_item('face_selector_order', args.get('face_selector_order'))
66
+ apply_state_item('face_selector_age_start', args.get('face_selector_age_start'))
67
+ apply_state_item('face_selector_age_end', args.get('face_selector_age_end'))
68
+ apply_state_item('face_selector_gender', args.get('face_selector_gender'))
69
+ apply_state_item('face_selector_race', args.get('face_selector_race'))
70
+ apply_state_item('reference_face_position', args.get('reference_face_position'))
71
+ apply_state_item('reference_face_distance', args.get('reference_face_distance'))
72
+ apply_state_item('reference_frame_number', args.get('reference_frame_number'))
73
+ # face masker
74
+ apply_state_item('face_occluder_model', args.get('face_occluder_model'))
75
+ apply_state_item('face_parser_model', args.get('face_parser_model'))
76
+ apply_state_item('face_mask_types', args.get('face_mask_types'))
77
+ apply_state_item('face_mask_areas', args.get('face_mask_areas'))
78
+ apply_state_item('face_mask_regions', args.get('face_mask_regions'))
79
+ apply_state_item('face_mask_blur', args.get('face_mask_blur'))
80
+ apply_state_item('face_mask_padding', normalize_padding(args.get('face_mask_padding')))
81
+ # frame extraction
82
+ apply_state_item('trim_frame_start', args.get('trim_frame_start'))
83
+ apply_state_item('trim_frame_end', args.get('trim_frame_end'))
84
+ apply_state_item('temp_frame_format', args.get('temp_frame_format'))
85
+ apply_state_item('keep_temp', args.get('keep_temp'))
86
+ # output creation
87
+ apply_state_item('output_image_quality', args.get('output_image_quality'))
88
+ if is_image(args.get('target_path')):
89
+ output_image_resolution = detect_image_resolution(args.get('target_path'))
90
+ output_image_resolutions = create_image_resolutions(output_image_resolution)
91
+ if args.get('output_image_resolution') in output_image_resolutions:
92
+ apply_state_item('output_image_resolution', args.get('output_image_resolution'))
93
+ else:
94
+ apply_state_item('output_image_resolution', pack_resolution(output_image_resolution))
95
+ apply_state_item('output_audio_encoder', args.get('output_audio_encoder'))
96
+ apply_state_item('output_audio_quality', args.get('output_audio_quality'))
97
+ apply_state_item('output_audio_volume', args.get('output_audio_volume'))
98
+ apply_state_item('output_video_encoder', args.get('output_video_encoder'))
99
+ apply_state_item('output_video_preset', args.get('output_video_preset'))
100
+ apply_state_item('output_video_quality', args.get('output_video_quality'))
101
+ if is_video(args.get('target_path')):
102
+ output_video_resolution = detect_video_resolution(args.get('target_path'))
103
+ output_video_resolutions = create_video_resolutions(output_video_resolution)
104
+ if args.get('output_video_resolution') in output_video_resolutions:
105
+ apply_state_item('output_video_resolution', args.get('output_video_resolution'))
106
+ else:
107
+ apply_state_item('output_video_resolution', pack_resolution(output_video_resolution))
108
+ if args.get('output_video_fps') or is_video(args.get('target_path')):
109
+ output_video_fps = normalize_fps(args.get('output_video_fps')) or detect_video_fps(args.get('target_path'))
110
+ apply_state_item('output_video_fps', output_video_fps)
111
+ # processors
112
+ available_processors = [ get_file_name(file_path) for file_path in resolve_file_paths('facefusion/processors/modules') ]
113
+ apply_state_item('processors', args.get('processors'))
114
+ for processor_module in get_processors_modules(available_processors):
115
+ processor_module.apply_args(args, apply_state_item)
116
+ # uis
117
+ apply_state_item('open_browser', args.get('open_browser'))
118
+ apply_state_item('ui_layouts', args.get('ui_layouts'))
119
+ apply_state_item('ui_workflow', args.get('ui_workflow'))
120
+ # execution
121
+ apply_state_item('execution_device_id', args.get('execution_device_id'))
122
+ apply_state_item('execution_providers', args.get('execution_providers'))
123
+ apply_state_item('execution_thread_count', args.get('execution_thread_count'))
124
+ apply_state_item('execution_queue_count', args.get('execution_queue_count'))
125
+ # download
126
+ apply_state_item('download_providers', args.get('download_providers'))
127
+ apply_state_item('download_scope', args.get('download_scope'))
128
+ # benchmark
129
+ apply_state_item('benchmark_resolutions', args.get('benchmark_resolutions'))
130
+ apply_state_item('benchmark_cycle_count', args.get('benchmark_cycle_count'))
131
+ # memory
132
+ apply_state_item('video_memory_strategy', args.get('video_memory_strategy'))
133
+ apply_state_item('system_memory_limit', args.get('system_memory_limit'))
134
+ # misc
135
+ apply_state_item('log_level', args.get('log_level'))
136
+ apply_state_item('halt_on_error', args.get('halt_on_error'))
137
+ # jobs
138
+ apply_state_item('job_id', args.get('job_id'))
139
+ apply_state_item('job_status', args.get('job_status'))
140
+ apply_state_item('step_index', args.get('step_index'))
facefusion/audio.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+ from typing import Any, List, Optional
3
+
4
+ import numpy
5
+ import scipy
6
+ from numpy.typing import NDArray
7
+
8
+ from facefusion.ffmpeg import read_audio_buffer
9
+ from facefusion.filesystem import is_audio
10
+ from facefusion.types import Audio, AudioFrame, Fps, Mel, MelFilterBank, Spectrogram
11
+ from facefusion.voice_extractor import batch_extract_voice
12
+
13
+
14
+ @lru_cache()
15
+ def read_static_audio(audio_path : str, fps : Fps) -> Optional[List[AudioFrame]]:
16
+ return read_audio(audio_path, fps)
17
+
18
+
19
+ def read_audio(audio_path : str, fps : Fps) -> Optional[List[AudioFrame]]:
20
+ audio_sample_rate = 48000
21
+ audio_sample_size = 16
22
+ audio_channel_total = 2
23
+
24
+ if is_audio(audio_path):
25
+ audio_buffer = read_audio_buffer(audio_path, audio_sample_rate, audio_sample_size, audio_channel_total)
26
+ audio = numpy.frombuffer(audio_buffer, dtype = numpy.int16).reshape(-1, 2)
27
+ audio = prepare_audio(audio)
28
+ spectrogram = create_spectrogram(audio)
29
+ audio_frames = extract_audio_frames(spectrogram, fps)
30
+ return audio_frames
31
+ return None
32
+
33
+
34
+ @lru_cache()
35
+ def read_static_voice(audio_path : str, fps : Fps) -> Optional[List[AudioFrame]]:
36
+ return read_voice(audio_path, fps)
37
+
38
+
39
+ def read_voice(audio_path : str, fps : Fps) -> Optional[List[AudioFrame]]:
40
+ voice_sample_rate = 48000
41
+ voice_sample_size = 16
42
+ voice_channel_total = 2
43
+ voice_chunk_size = 240 * 1024
44
+ voice_step_size = 180 * 1024
45
+
46
+ if is_audio(audio_path):
47
+ audio_buffer = read_audio_buffer(audio_path, voice_sample_rate, voice_sample_size, voice_channel_total)
48
+ audio = numpy.frombuffer(audio_buffer, dtype = numpy.int16).reshape(-1, 2)
49
+ audio = batch_extract_voice(audio, voice_chunk_size, voice_step_size)
50
+ audio = prepare_voice(audio)
51
+ spectrogram = create_spectrogram(audio)
52
+ audio_frames = extract_audio_frames(spectrogram, fps)
53
+ return audio_frames
54
+ return None
55
+
56
+
57
+ def get_audio_frame(audio_path : str, fps : Fps, frame_number : int = 0) -> Optional[AudioFrame]:
58
+ if is_audio(audio_path):
59
+ audio_frames = read_static_audio(audio_path, fps)
60
+ if frame_number in range(len(audio_frames)):
61
+ return audio_frames[frame_number]
62
+ return None
63
+
64
+
65
+ def extract_audio_frames(spectrogram : Spectrogram, fps : Fps) -> List[AudioFrame]:
66
+ audio_frames = []
67
+ mel_filter_total = 80
68
+ audio_step_size = 16
69
+ indices = numpy.arange(0, spectrogram.shape[1], mel_filter_total / fps).astype(numpy.int16)
70
+ indices = indices[indices >= audio_step_size]
71
+
72
+ for index in indices:
73
+ start = max(0, index - audio_step_size)
74
+ audio_frames.append(spectrogram[:, start:index])
75
+
76
+ return audio_frames
77
+
78
+
79
+ def get_voice_frame(audio_path : str, fps : Fps, frame_number : int = 0) -> Optional[AudioFrame]:
80
+ if is_audio(audio_path):
81
+ voice_frames = read_static_voice(audio_path, fps)
82
+ if frame_number in range(len(voice_frames)):
83
+ return voice_frames[frame_number]
84
+ return None
85
+
86
+
87
+ def create_empty_audio_frame() -> AudioFrame:
88
+ mel_filter_total = 80
89
+ audio_step_size = 16
90
+ audio_frame = numpy.zeros((mel_filter_total, audio_step_size)).astype(numpy.int16)
91
+ return audio_frame
92
+
93
+
94
+ def prepare_audio(audio : Audio) -> Audio:
95
+ if audio.ndim > 1:
96
+ audio = numpy.mean(audio, axis = 1)
97
+ audio = audio / numpy.max(numpy.abs(audio), axis = 0)
98
+ audio = scipy.signal.lfilter([ 1.0, -0.97 ], [ 1.0 ], audio)
99
+ return audio
100
+
101
+
102
+ def prepare_voice(audio : Audio) -> Audio:
103
+ audio_sample_rate = 48000
104
+ audio_resample_rate = 16000
105
+ audio_resample_factor = round(len(audio) * audio_resample_rate / audio_sample_rate)
106
+ audio = scipy.signal.resample(audio, audio_resample_factor)
107
+ audio = prepare_audio(audio)
108
+ return audio
109
+
110
+
111
+ def convert_hertz_to_mel(hertz : float) -> float:
112
+ return 2595 * numpy.log10(1 + hertz / 700)
113
+
114
+
115
+ def convert_mel_to_hertz(mel : Mel) -> NDArray[Any]:
116
+ return 700 * (10 ** (mel / 2595) - 1)
117
+
118
+
119
+ def create_mel_filter_bank() -> MelFilterBank:
120
+ audio_sample_rate = 16000
121
+ audio_min_frequency = 55.0
122
+ audio_max_frequency = 7600.0
123
+ mel_filter_total = 80
124
+ mel_bin_total = 800
125
+ mel_filter_bank = numpy.zeros((mel_filter_total, mel_bin_total // 2 + 1))
126
+ mel_frequency_range = numpy.linspace(convert_hertz_to_mel(audio_min_frequency), convert_hertz_to_mel(audio_max_frequency), mel_filter_total + 2)
127
+ indices = numpy.floor((mel_bin_total + 1) * convert_mel_to_hertz(mel_frequency_range) / audio_sample_rate).astype(numpy.int16)
128
+
129
+ for index in range(mel_filter_total):
130
+ start = indices[index]
131
+ end = indices[index + 1]
132
+ mel_filter_bank[index, start:end] = scipy.signal.windows.triang(end - start)
133
+
134
+ return mel_filter_bank
135
+
136
+
137
+ def create_spectrogram(audio : Audio) -> Spectrogram:
138
+ mel_bin_total = 800
139
+ mel_bin_overlap = 600
140
+ mel_filter_bank = create_mel_filter_bank()
141
+ spectrogram = scipy.signal.stft(audio, nperseg = mel_bin_total, nfft = mel_bin_total, noverlap = mel_bin_overlap)[2]
142
+ spectrogram = numpy.dot(mel_filter_bank, numpy.abs(spectrogram))
143
+ return spectrogram
facefusion/benchmarker.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import os
3
+ import statistics
4
+ import tempfile
5
+ from time import perf_counter
6
+ from typing import Generator, List
7
+
8
+ import facefusion.choices
9
+ from facefusion import core, state_manager
10
+ from facefusion.cli_helper import render_table
11
+ from facefusion.download import conditional_download, resolve_download_url
12
+ from facefusion.filesystem import get_file_extension
13
+ from facefusion.types import BenchmarkCycleSet
14
+ from facefusion.vision import count_video_frame_total, detect_video_fps, detect_video_resolution, pack_resolution
15
+
16
+
17
+ def pre_check() -> bool:
18
+ conditional_download('.assets/examples',
19
+ [
20
+ resolve_download_url('examples-3.0.0', 'source.jpg'),
21
+ resolve_download_url('examples-3.0.0', 'source.mp3'),
22
+ resolve_download_url('examples-3.0.0', 'target-240p.mp4'),
23
+ resolve_download_url('examples-3.0.0', 'target-360p.mp4'),
24
+ resolve_download_url('examples-3.0.0', 'target-540p.mp4'),
25
+ resolve_download_url('examples-3.0.0', 'target-720p.mp4'),
26
+ resolve_download_url('examples-3.0.0', 'target-1080p.mp4'),
27
+ resolve_download_url('examples-3.0.0', 'target-1440p.mp4'),
28
+ resolve_download_url('examples-3.0.0', 'target-2160p.mp4')
29
+ ])
30
+ return True
31
+
32
+
33
+ def run() -> Generator[List[BenchmarkCycleSet], None, None]:
34
+ benchmark_resolutions = state_manager.get_item('benchmark_resolutions')
35
+ benchmark_cycle_count = state_manager.get_item('benchmark_cycle_count')
36
+
37
+ state_manager.init_item('source_paths', [ '.assets/examples/source.jpg', '.assets/examples/source.mp3' ])
38
+ state_manager.init_item('face_landmarker_score', 0)
39
+ state_manager.init_item('temp_frame_format', 'bmp')
40
+ state_manager.init_item('output_audio_volume', 0)
41
+ state_manager.init_item('output_video_preset', 'ultrafast')
42
+ state_manager.init_item('video_memory_strategy', 'tolerant')
43
+
44
+ benchmarks = []
45
+ target_paths = [facefusion.choices.benchmark_set.get(benchmark_resolution) for benchmark_resolution in benchmark_resolutions if benchmark_resolution in facefusion.choices.benchmark_set]
46
+
47
+ for target_path in target_paths:
48
+ state_manager.set_item('target_path', target_path)
49
+ state_manager.set_item('output_path', suggest_output_path(state_manager.get_item('target_path')))
50
+ benchmarks.append(cycle(benchmark_cycle_count))
51
+ yield benchmarks
52
+
53
+
54
+ def cycle(cycle_count : int) -> BenchmarkCycleSet:
55
+ process_times = []
56
+ video_frame_total = count_video_frame_total(state_manager.get_item('target_path'))
57
+ output_video_resolution = detect_video_resolution(state_manager.get_item('target_path'))
58
+ state_manager.set_item('output_video_resolution', pack_resolution(output_video_resolution))
59
+ state_manager.set_item('output_video_fps', detect_video_fps(state_manager.get_item('target_path')))
60
+
61
+ core.conditional_process()
62
+
63
+ for index in range(cycle_count):
64
+ start_time = perf_counter()
65
+ core.conditional_process()
66
+ end_time = perf_counter()
67
+ process_times.append(end_time - start_time)
68
+
69
+ average_run = round(statistics.mean(process_times), 2)
70
+ fastest_run = round(min(process_times), 2)
71
+ slowest_run = round(max(process_times), 2)
72
+ relative_fps = round(video_frame_total * cycle_count / sum(process_times), 2)
73
+
74
+ return\
75
+ {
76
+ 'target_path': state_manager.get_item('target_path'),
77
+ 'cycle_count': cycle_count,
78
+ 'average_run': average_run,
79
+ 'fastest_run': fastest_run,
80
+ 'slowest_run': slowest_run,
81
+ 'relative_fps': relative_fps
82
+ }
83
+
84
+
85
+ def suggest_output_path(target_path : str) -> str:
86
+ target_file_extension = get_file_extension(target_path)
87
+ return os.path.join(tempfile.gettempdir(), hashlib.sha1().hexdigest()[:8] + target_file_extension)
88
+
89
+
90
+ def render() -> None:
91
+ benchmarks = []
92
+ headers =\
93
+ [
94
+ 'target_path',
95
+ 'cycle_count',
96
+ 'average_run',
97
+ 'fastest_run',
98
+ 'slowest_run',
99
+ 'relative_fps'
100
+ ]
101
+
102
+ for benchmark in run():
103
+ benchmarks = benchmark
104
+
105
+ contents = [ list(benchmark_set.values()) for benchmark_set in benchmarks ]
106
+ render_table(headers, contents)
facefusion/choices.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import List, Sequence
3
+
4
+ from facefusion.common_helper import create_float_range, create_int_range
5
+ from facefusion.types import Angle, AudioEncoder, AudioFormat, AudioTypeSet, BenchmarkResolution, BenchmarkSet, DownloadProvider, DownloadProviderSet, DownloadScope, EncoderSet, ExecutionProvider, ExecutionProviderSet, FaceDetectorModel, FaceDetectorSet, FaceLandmarkerModel, FaceMaskArea, FaceMaskAreaSet, FaceMaskRegion, FaceMaskRegionSet, FaceMaskType, FaceOccluderModel, FaceParserModel, FaceSelectorMode, FaceSelectorOrder, Gender, ImageFormat, ImageTypeSet, JobStatus, LogLevel, LogLevelSet, Race, Score, TempFrameFormat, UiWorkflow, VideoEncoder, VideoFormat, VideoMemoryStrategy, VideoPreset, VideoTypeSet, WebcamMode
6
+
7
+ face_detector_set : FaceDetectorSet =\
8
+ {
9
+ 'many': [ '640x640' ],
10
+ 'retinaface': [ '160x160', '320x320', '480x480', '512x512', '640x640' ],
11
+ 'scrfd': [ '160x160', '320x320', '480x480', '512x512', '640x640' ],
12
+ 'yolo_face': [ '640x640' ]
13
+ }
14
+ face_detector_models : List[FaceDetectorModel] = list(face_detector_set.keys())
15
+ face_landmarker_models : List[FaceLandmarkerModel] = [ 'many', '2dfan4', 'peppa_wutz' ]
16
+ face_selector_modes : List[FaceSelectorMode] = [ 'many', 'one', 'reference' ]
17
+ face_selector_orders : List[FaceSelectorOrder] = [ 'left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best' ]
18
+ face_selector_genders : List[Gender] = [ 'female', 'male' ]
19
+ face_selector_races : List[Race] = [ 'white', 'black', 'latino', 'asian', 'indian', 'arabic' ]
20
+ face_occluder_models : List[FaceOccluderModel] = [ 'xseg_1', 'xseg_2', 'xseg_3' ]
21
+ face_parser_models : List[FaceParserModel] = [ 'bisenet_resnet_18', 'bisenet_resnet_34' ]
22
+ face_mask_types : List[FaceMaskType] = [ 'box', 'occlusion', 'area', 'region' ]
23
+ face_mask_area_set : FaceMaskAreaSet =\
24
+ {
25
+ 'upper-face': [ 0, 1, 2, 31, 32, 33, 34, 35, 14, 15, 16, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17 ],
26
+ 'lower-face': [ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 35, 34, 33, 32, 31 ],
27
+ 'mouth': [ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 ]
28
+ }
29
+ face_mask_region_set : FaceMaskRegionSet =\
30
+ {
31
+ 'skin': 1,
32
+ 'left-eyebrow': 2,
33
+ 'right-eyebrow': 3,
34
+ 'left-eye': 4,
35
+ 'right-eye': 5,
36
+ 'glasses': 6,
37
+ 'nose': 10,
38
+ 'mouth': 11,
39
+ 'upper-lip': 12,
40
+ 'lower-lip': 13
41
+ }
42
+ face_mask_areas : List[FaceMaskArea] = list(face_mask_area_set.keys())
43
+ face_mask_regions : List[FaceMaskRegion] = list(face_mask_region_set.keys())
44
+
45
+ audio_type_set : AudioTypeSet =\
46
+ {
47
+ 'flac': 'audio/flac',
48
+ 'm4a': 'audio/mp4',
49
+ 'mp3': 'audio/mpeg',
50
+ 'ogg': 'audio/ogg',
51
+ 'opus': 'audio/opus',
52
+ 'wav': 'audio/x-wav'
53
+ }
54
+ image_type_set : ImageTypeSet =\
55
+ {
56
+ 'bmp': 'image/bmp',
57
+ 'jpeg': 'image/jpeg',
58
+ 'png': 'image/png',
59
+ 'tiff': 'image/tiff',
60
+ 'webp': 'image/webp'
61
+ }
62
+ video_type_set : VideoTypeSet =\
63
+ {
64
+ 'avi': 'video/x-msvideo',
65
+ 'm4v': 'video/mp4',
66
+ 'mkv': 'video/x-matroska',
67
+ 'mp4': 'video/mp4',
68
+ 'mov': 'video/quicktime',
69
+ 'webm': 'video/webm'
70
+ }
71
+ audio_formats : List[AudioFormat] = list(audio_type_set.keys())
72
+ image_formats : List[ImageFormat] = list(image_type_set.keys())
73
+ video_formats : List[VideoFormat] = list(video_type_set.keys())
74
+ temp_frame_formats : List[TempFrameFormat] = [ 'bmp', 'jpeg', 'png', 'tiff' ]
75
+
76
+ output_encoder_set : EncoderSet =\
77
+ {
78
+ 'audio': [ 'flac', 'aac', 'libmp3lame', 'libopus', 'libvorbis', 'pcm_s16le', 'pcm_s32le' ],
79
+ 'video': [ 'libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc', 'h264_amf', 'hevc_amf', 'h264_qsv', 'hevc_qsv', 'h264_videotoolbox', 'hevc_videotoolbox', 'rawvideo' ]
80
+ }
81
+ output_audio_encoders : List[AudioEncoder] = output_encoder_set.get('audio')
82
+ output_video_encoders : List[VideoEncoder] = output_encoder_set.get('video')
83
+ output_video_presets : List[VideoPreset] = [ 'ultrafast', 'superfast', 'veryfast', 'faster', 'fast', 'medium', 'slow', 'slower', 'veryslow' ]
84
+
85
+ image_template_sizes : List[float] = [ 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4 ]
86
+ video_template_sizes : List[int] = [ 240, 360, 480, 540, 720, 1080, 1440, 2160, 4320 ]
87
+
88
+ benchmark_set : BenchmarkSet =\
89
+ {
90
+ '240p': '.assets/examples/target-240p.mp4',
91
+ '360p': '.assets/examples/target-360p.mp4',
92
+ '540p': '.assets/examples/target-540p.mp4',
93
+ '720p': '.assets/examples/target-720p.mp4',
94
+ '1080p': '.assets/examples/target-1080p.mp4',
95
+ '1440p': '.assets/examples/target-1440p.mp4',
96
+ '2160p': '.assets/examples/target-2160p.mp4'
97
+ }
98
+ benchmark_resolutions : List[BenchmarkResolution] = list(benchmark_set.keys())
99
+
100
+ webcam_modes : List[WebcamMode] = [ 'inline', 'udp', 'v4l2' ]
101
+ webcam_resolutions : List[str] = [ '320x240', '640x480', '800x600', '1024x768', '1280x720', '1280x960', '1920x1080', '2560x1440', '3840x2160' ]
102
+
103
+ execution_provider_set : ExecutionProviderSet =\
104
+ {
105
+ 'cuda': 'CUDAExecutionProvider',
106
+ 'tensorrt': 'TensorrtExecutionProvider',
107
+ 'directml': 'DmlExecutionProvider',
108
+ 'rocm': 'ROCMExecutionProvider',
109
+ 'openvino': 'OpenVINOExecutionProvider',
110
+ 'coreml': 'CoreMLExecutionProvider',
111
+ 'cpu': 'CPUExecutionProvider'
112
+ }
113
+ execution_providers : List[ExecutionProvider] = list(execution_provider_set.keys())
114
+ download_provider_set : DownloadProviderSet =\
115
+ {
116
+ 'github':
117
+ {
118
+ 'urls':
119
+ [
120
+ 'https://github.com'
121
+ ],
122
+ 'path': '/facefusion/facefusion-assets/releases/download/{base_name}/{file_name}'
123
+ },
124
+ 'huggingface':
125
+ {
126
+ 'urls':
127
+ [
128
+ 'https://huggingface.co',
129
+ 'https://hf-mirror.com'
130
+ ],
131
+ 'path': '/facefusion/{base_name}/resolve/main/{file_name}'
132
+ }
133
+ }
134
+ download_providers : List[DownloadProvider] = list(download_provider_set.keys())
135
+ download_scopes : List[DownloadScope] = [ 'lite', 'full' ]
136
+
137
+ video_memory_strategies : List[VideoMemoryStrategy] = [ 'strict', 'moderate', 'tolerant' ]
138
+
139
+ log_level_set : LogLevelSet =\
140
+ {
141
+ 'error': logging.ERROR,
142
+ 'warn': logging.WARNING,
143
+ 'info': logging.INFO,
144
+ 'debug': logging.DEBUG
145
+ }
146
+ log_levels : List[LogLevel] = list(log_level_set.keys())
147
+
148
+ ui_workflows : List[UiWorkflow] = [ 'instant_runner', 'job_runner', 'job_manager' ]
149
+ job_statuses : List[JobStatus] = [ 'drafted', 'queued', 'completed', 'failed' ]
150
+
151
+ benchmark_cycle_count_range : Sequence[int] = create_int_range(1, 10, 1)
152
+ execution_thread_count_range : Sequence[int] = create_int_range(1, 32, 1)
153
+ execution_queue_count_range : Sequence[int] = create_int_range(1, 4, 1)
154
+ system_memory_limit_range : Sequence[int] = create_int_range(0, 128, 4)
155
+ face_detector_angles : Sequence[Angle] = create_int_range(0, 270, 90)
156
+ face_detector_score_range : Sequence[Score] = create_float_range(0.0, 1.0, 0.05)
157
+ face_landmarker_score_range : Sequence[Score] = create_float_range(0.0, 1.0, 0.05)
158
+ face_mask_blur_range : Sequence[float] = create_float_range(0.0, 1.0, 0.05)
159
+ face_mask_padding_range : Sequence[int] = create_int_range(0, 100, 1)
160
+ face_selector_age_range : Sequence[int] = create_int_range(0, 100, 1)
161
+ reference_face_distance_range : Sequence[float] = create_float_range(0.0, 1.0, 0.05)
162
+ output_image_quality_range : Sequence[int] = create_int_range(0, 100, 1)
163
+ output_audio_quality_range : Sequence[int] = create_int_range(0, 100, 1)
164
+ output_audio_volume_range : Sequence[int] = create_int_range(0, 100, 1)
165
+ output_video_quality_range : Sequence[int] = create_int_range(0, 100, 1)
facefusion/cli_helper.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+
3
+ from facefusion.logger import get_package_logger
4
+ from facefusion.types import TableContents, TableHeaders
5
+
6
+
7
+ def render_table(headers : TableHeaders, contents : TableContents) -> None:
8
+ package_logger = get_package_logger()
9
+ table_column, table_separator = create_table_parts(headers, contents)
10
+
11
+ package_logger.critical(table_separator)
12
+ package_logger.critical(table_column.format(*headers))
13
+ package_logger.critical(table_separator)
14
+
15
+ for content in contents:
16
+ content = [ str(value) for value in content ]
17
+ package_logger.critical(table_column.format(*content))
18
+
19
+ package_logger.critical(table_separator)
20
+
21
+
22
+ def create_table_parts(headers : TableHeaders, contents : TableContents) -> Tuple[str, str]:
23
+ column_parts = []
24
+ separator_parts = []
25
+ widths = [ len(header) for header in headers ]
26
+
27
+ for content in contents:
28
+ for index, value in enumerate(content):
29
+ widths[index] = max(widths[index], len(str(value)))
30
+
31
+ for width in widths:
32
+ column_parts.append('{:<' + str(width) + '}')
33
+ separator_parts.append('-' * width)
34
+
35
+ return '| ' + ' | '.join(column_parts) + ' |', '+-' + '-+-'.join(separator_parts) + '-+'
facefusion/common_helper.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import platform
2
+ from typing import Any, Iterable, Optional, Reversible, Sequence
3
+
4
+
5
+ def is_linux() -> bool:
6
+ return platform.system().lower() == 'linux'
7
+
8
+
9
+ def is_macos() -> bool:
10
+ return platform.system().lower() == 'darwin'
11
+
12
+
13
+ def is_windows() -> bool:
14
+ return platform.system().lower() == 'windows'
15
+
16
+
17
+ def create_int_metavar(int_range : Sequence[int]) -> str:
18
+ return '[' + str(int_range[0]) + '..' + str(int_range[-1]) + ':' + str(calc_int_step(int_range)) + ']'
19
+
20
+
21
+ def create_float_metavar(float_range : Sequence[float]) -> str:
22
+ return '[' + str(float_range[0]) + '..' + str(float_range[-1]) + ':' + str(calc_float_step(float_range)) + ']'
23
+
24
+
25
+ def create_int_range(start : int, end : int, step : int) -> Sequence[int]:
26
+ int_range = []
27
+ current = start
28
+
29
+ while current <= end:
30
+ int_range.append(current)
31
+ current += step
32
+ return int_range
33
+
34
+
35
+ def create_float_range(start : float, end : float, step : float) -> Sequence[float]:
36
+ float_range = []
37
+ current = start
38
+
39
+ while current <= end:
40
+ float_range.append(round(current, 2))
41
+ current = round(current + step, 2)
42
+ return float_range
43
+
44
+
45
+ def calc_int_step(int_range : Sequence[int]) -> int:
46
+ return int_range[1] - int_range[0]
47
+
48
+
49
+ def calc_float_step(float_range : Sequence[float]) -> float:
50
+ return round(float_range[1] - float_range[0], 2)
51
+
52
+
53
+ def cast_int(value : Any) -> Optional[int]:
54
+ try:
55
+ return int(value)
56
+ except (ValueError, TypeError):
57
+ return None
58
+
59
+
60
+ def cast_float(value : Any) -> Optional[float]:
61
+ try:
62
+ return float(value)
63
+ except (ValueError, TypeError):
64
+ return None
65
+
66
+
67
+ def cast_bool(value : Any) -> Optional[bool]:
68
+ if value == 'True':
69
+ return True
70
+ if value == 'False':
71
+ return False
72
+ return None
73
+
74
+
75
+ def get_first(__list__ : Any) -> Any:
76
+ if isinstance(__list__, Iterable):
77
+ return next(iter(__list__), None)
78
+ return None
79
+
80
+
81
+ def get_last(__list__ : Any) -> Any:
82
+ if isinstance(__list__, Reversible):
83
+ return next(reversed(__list__), None)
84
+ return None
facefusion/config.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from configparser import ConfigParser
2
+ from typing import List, Optional
3
+
4
+ from facefusion import state_manager
5
+ from facefusion.common_helper import cast_bool, cast_float, cast_int
6
+
7
+ CONFIG_PARSER = None
8
+
9
+
10
+ def get_config_parser() -> ConfigParser:
11
+ global CONFIG_PARSER
12
+
13
+ if CONFIG_PARSER is None:
14
+ CONFIG_PARSER = ConfigParser()
15
+ CONFIG_PARSER.read(state_manager.get_item('config_path'), encoding = 'utf-8')
16
+ return CONFIG_PARSER
17
+
18
+
19
+ def clear_config_parser() -> None:
20
+ global CONFIG_PARSER
21
+
22
+ CONFIG_PARSER = None
23
+
24
+
25
+ def get_str_value(section : str, option : str, fallback : Optional[str] = None) -> Optional[str]:
26
+ config_parser = get_config_parser()
27
+
28
+ if config_parser.has_option(section, option) and config_parser.get(section, option).strip():
29
+ return config_parser.get(section, option)
30
+ return fallback
31
+
32
+
33
+ def get_int_value(section : str, option : str, fallback : Optional[str] = None) -> Optional[int]:
34
+ config_parser = get_config_parser()
35
+
36
+ if config_parser.has_option(section, option) and config_parser.get(section, option).strip():
37
+ return config_parser.getint(section, option)
38
+ return cast_int(fallback)
39
+
40
+
41
+ def get_float_value(section : str, option : str, fallback : Optional[str] = None) -> Optional[float]:
42
+ config_parser = get_config_parser()
43
+
44
+ if config_parser.has_option(section, option) and config_parser.get(section, option).strip():
45
+ return config_parser.getfloat(section, option)
46
+ return cast_float(fallback)
47
+
48
+
49
+ def get_bool_value(section : str, option : str, fallback : Optional[str] = None) -> Optional[bool]:
50
+ config_parser = get_config_parser()
51
+
52
+ if config_parser.has_option(section, option) and config_parser.get(section, option).strip():
53
+ return config_parser.getboolean(section, option)
54
+ return cast_bool(fallback)
55
+
56
+
57
+ def get_str_list(section : str, option : str, fallback : Optional[str] = None) -> Optional[List[str]]:
58
+ config_parser = get_config_parser()
59
+
60
+ if config_parser.has_option(section, option) and config_parser.get(section, option).strip():
61
+ return config_parser.get(section, option).split()
62
+ if fallback:
63
+ return fallback.split()
64
+ return None
65
+
66
+
67
+ def get_int_list(section : str, option : str, fallback : Optional[str] = None) -> Optional[List[int]]:
68
+ config_parser = get_config_parser()
69
+
70
+ if config_parser.has_option(section, option) and config_parser.get(section, option).strip():
71
+ return list(map(int, config_parser.get(section, option).split()))
72
+ if fallback:
73
+ return list(map(int, fallback.split()))
74
+ return None
facefusion/content_analyser.py ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+ from typing import List, Tuple
3
+
4
+ import numpy
5
+ from tqdm import tqdm
6
+
7
+ from facefusion import inference_manager, state_manager, wording
8
+ from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
9
+ from facefusion.execution import has_execution_provider
10
+ from facefusion.filesystem import resolve_relative_path
11
+ from facefusion.thread_helper import conditional_thread_semaphore
12
+ from facefusion.types import Detection, DownloadScope, DownloadSet, ExecutionProvider, Fps, InferencePool, ModelSet, VisionFrame
13
+ from facefusion.vision import detect_video_fps, fit_frame, read_image, read_video_frame
14
+
15
+ STREAM_COUNTER = 0
16
+
17
+
18
+ @lru_cache(maxsize = None)
19
+ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
20
+ return\
21
+ {
22
+ 'nsfw_1':
23
+ {
24
+ 'hashes':
25
+ {
26
+ 'content_analyser':
27
+ {
28
+ 'url': resolve_download_url('models-3.3.0', 'nsfw_1.hash'),
29
+ 'path': resolve_relative_path('../.assets/models/nsfw_1.hash')
30
+ }
31
+ },
32
+ 'sources':
33
+ {
34
+ 'content_analyser':
35
+ {
36
+ 'url': resolve_download_url('models-3.3.0', 'nsfw_1.onnx'),
37
+ 'path': resolve_relative_path('../.assets/models/nsfw_1.onnx')
38
+ }
39
+ },
40
+ 'size': (640, 640),
41
+ 'mean': (0.0, 0.0, 0.0),
42
+ 'standard_deviation': (1.0, 1.0, 1.0)
43
+ },
44
+ 'nsfw_2':
45
+ {
46
+ 'hashes':
47
+ {
48
+ 'content_analyser':
49
+ {
50
+ 'url': resolve_download_url('models-3.3.0', 'nsfw_2.hash'),
51
+ 'path': resolve_relative_path('../.assets/models/nsfw_2.hash')
52
+ }
53
+ },
54
+ 'sources':
55
+ {
56
+ 'content_analyser':
57
+ {
58
+ 'url': resolve_download_url('models-3.3.0', 'nsfw_2.onnx'),
59
+ 'path': resolve_relative_path('../.assets/models/nsfw_2.onnx')
60
+ }
61
+ },
62
+ 'size': (384, 384),
63
+ 'mean': (0.5, 0.5, 0.5),
64
+ 'standard_deviation': (0.5, 0.5, 0.5)
65
+ },
66
+ 'nsfw_3':
67
+ {
68
+ 'hashes':
69
+ {
70
+ 'content_analyser':
71
+ {
72
+ 'url': resolve_download_url('models-3.3.0', 'nsfw_3.hash'),
73
+ 'path': resolve_relative_path('../.assets/models/nsfw_3.hash')
74
+ }
75
+ },
76
+ 'sources':
77
+ {
78
+ 'content_analyser':
79
+ {
80
+ 'url': resolve_download_url('models-3.3.0', 'nsfw_3.onnx'),
81
+ 'path': resolve_relative_path('../.assets/models/nsfw_3.onnx')
82
+ }
83
+ },
84
+ 'size': (448, 448),
85
+ 'mean': (0.48145466, 0.4578275, 0.40821073),
86
+ 'standard_deviation': (0.26862954, 0.26130258, 0.27577711)
87
+ }
88
+ }
89
+
90
+
91
+ def get_inference_pool() -> InferencePool:
92
+ model_names = [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]
93
+ _, model_source_set = collect_model_downloads()
94
+
95
+ return inference_manager.get_inference_pool(__name__, model_names, model_source_set)
96
+
97
+
98
+ def clear_inference_pool() -> None:
99
+ model_names = [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]
100
+ inference_manager.clear_inference_pool(__name__, model_names)
101
+
102
+
103
+ def resolve_execution_providers() -> List[ExecutionProvider]:
104
+ if has_execution_provider('coreml'):
105
+ return [ 'cpu' ]
106
+ return state_manager.get_item('execution_providers')
107
+
108
+
109
+ def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
110
+ model_set = create_static_model_set('full')
111
+ model_hash_set = {}
112
+ model_source_set = {}
113
+
114
+ for content_analyser_model in [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]:
115
+ model_hash_set[content_analyser_model] = model_set.get(content_analyser_model).get('hashes').get('content_analyser')
116
+ model_source_set[content_analyser_model] = model_set.get(content_analyser_model).get('sources').get('content_analyser')
117
+
118
+ return model_hash_set, model_source_set
119
+
120
+
121
+ def pre_check() -> bool:
122
+ model_hash_set, model_source_set = collect_model_downloads()
123
+
124
+ return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set)
125
+
126
+
127
+ def analyse_stream(vision_frame : VisionFrame, video_fps : Fps) -> bool:
128
+ global STREAM_COUNTER
129
+
130
+ STREAM_COUNTER = STREAM_COUNTER + 1
131
+ if STREAM_COUNTER % int(video_fps) == 0:
132
+ return analyse_frame(vision_frame)
133
+ return False
134
+
135
+
136
+ def analyse_frame(vision_frame : VisionFrame) -> bool:
137
+ return detect_nsfw(vision_frame)
138
+
139
+
140
+ @lru_cache(maxsize = None)
141
+ def analyse_image(image_path : str) -> bool:
142
+ vision_frame = read_image(image_path)
143
+ return analyse_frame(vision_frame)
144
+
145
+
146
+ @lru_cache(maxsize = None)
147
+ def analyse_video(video_path : str, trim_frame_start : int, trim_frame_end : int) -> bool:
148
+ video_fps = detect_video_fps(video_path)
149
+ frame_range = range(trim_frame_start, trim_frame_end)
150
+ rate = 0.0
151
+ total = 0
152
+ counter = 0
153
+
154
+ with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
155
+
156
+ for frame_number in frame_range:
157
+ if frame_number % int(video_fps) == 0:
158
+ vision_frame = read_video_frame(video_path, frame_number)
159
+ total += 1
160
+ if analyse_frame(vision_frame):
161
+ counter += 1
162
+ if counter > 0 and total > 0:
163
+ rate = counter / total * 100
164
+ progress.set_postfix(rate = rate)
165
+ progress.update()
166
+
167
+ return bool(rate > 10.0)
168
+
169
+
170
+ def detect_nsfw(vision_frame : VisionFrame) -> bool:
171
+ is_nsfw_1 = detect_with_nsfw_1(vision_frame)
172
+ is_nsfw_2 = detect_with_nsfw_2(vision_frame)
173
+ is_nsfw_3 = detect_with_nsfw_3(vision_frame)
174
+
175
+ return False
176
+
177
+
178
+ def detect_with_nsfw_1(vision_frame : VisionFrame) -> bool:
179
+ detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_1')
180
+ detection = forward_nsfw(detect_vision_frame, 'nsfw_1')
181
+ detection_score = numpy.max(numpy.amax(detection[:, 4:], axis = 1))
182
+ return bool(detection_score > 0.2)
183
+
184
+
185
+ def detect_with_nsfw_2(vision_frame : VisionFrame) -> bool:
186
+ detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_2')
187
+ detection = forward_nsfw(detect_vision_frame, 'nsfw_2')
188
+ detection_score = detection[0] - detection[1]
189
+ return bool(detection_score > 0.25)
190
+
191
+
192
+ def detect_with_nsfw_3(vision_frame : VisionFrame) -> bool:
193
+ detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_3')
194
+ detection = forward_nsfw(detect_vision_frame, 'nsfw_3')
195
+ detection_score = (detection[2] + detection[3]) - (detection[0] + detection[1])
196
+ return bool(detection_score > 10.5)
197
+
198
+
199
+ def forward_nsfw(vision_frame : VisionFrame, nsfw_model : str) -> Detection:
200
+ content_analyser = get_inference_pool().get(nsfw_model)
201
+
202
+ with conditional_thread_semaphore():
203
+ detection = content_analyser.run(None,
204
+ {
205
+ 'input': vision_frame
206
+ })[0]
207
+
208
+ if nsfw_model in [ 'nsfw_2', 'nsfw_3' ]:
209
+ return detection[0]
210
+
211
+ return detection
212
+
213
+
214
+ def prepare_detect_frame(temp_vision_frame : VisionFrame, model_name : str) -> VisionFrame:
215
+ model_set = create_static_model_set('full').get(model_name)
216
+ model_size = model_set.get('size')
217
+ model_mean = model_set.get('mean')
218
+ model_standard_deviation = model_set.get('standard_deviation')
219
+
220
+ detect_vision_frame = fit_frame(temp_vision_frame, model_size)
221
+ detect_vision_frame = detect_vision_frame[:, :, ::-1] / 255.0
222
+ detect_vision_frame -= model_mean
223
+ detect_vision_frame /= model_standard_deviation
224
+ detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
225
+ return detect_vision_frame
facefusion/core.py ADDED
@@ -0,0 +1,517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ import itertools
3
+ import shutil
4
+ import signal
5
+ import sys
6
+ from time import time
7
+
8
+ import numpy
9
+
10
+ from facefusion import benchmarker, cli_helper, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, hash_helper, logger, process_manager, state_manager, video_manager, voice_extractor, wording
11
+ from facefusion.args import apply_args, collect_job_args, reduce_job_args, reduce_step_args
12
+ from facefusion.common_helper import get_first
13
+ from facefusion.content_analyser import analyse_image, analyse_video
14
+ from facefusion.download import conditional_download_hashes, conditional_download_sources
15
+ from facefusion.exit_helper import hard_exit, signal_exit
16
+ from facefusion.face_analyser import get_average_face, get_many_faces, get_one_face
17
+ from facefusion.face_selector import sort_and_filter_faces
18
+ from facefusion.face_store import append_reference_face, clear_reference_faces, get_reference_faces
19
+ from facefusion.ffmpeg import copy_image, extract_frames, finalize_image, merge_video, replace_audio, restore_audio
20
+ from facefusion.filesystem import filter_audio_paths, get_file_name, is_image, is_video, resolve_file_paths, resolve_file_pattern
21
+ from facefusion.jobs import job_helper, job_manager, job_runner
22
+ from facefusion.jobs.job_list import compose_job_list
23
+ from facefusion.memory import limit_system_memory
24
+ from facefusion.processors.core import get_processors_modules
25
+ from facefusion.program import create_program
26
+ from facefusion.program_helper import validate_args
27
+ from facefusion.temp_helper import clear_temp_directory, create_temp_directory, get_temp_file_path, move_temp_file, resolve_temp_frame_paths
28
+ from facefusion.types import Args, ErrorCode
29
+ from facefusion.vision import pack_resolution, read_image, read_static_images, read_video_frame, restrict_image_resolution, restrict_trim_frame, restrict_video_fps, restrict_video_resolution, unpack_resolution
30
+
31
+
32
+ def cli() -> None:
33
+ if pre_check():
34
+ signal.signal(signal.SIGINT, signal_exit)
35
+ program = create_program()
36
+
37
+ if validate_args(program):
38
+ args = vars(program.parse_args())
39
+ apply_args(args, state_manager.init_item)
40
+
41
+ if state_manager.get_item('command'):
42
+ logger.init(state_manager.get_item('log_level'))
43
+ route(args)
44
+ else:
45
+ program.print_help()
46
+ else:
47
+ hard_exit(2)
48
+ else:
49
+ hard_exit(2)
50
+
51
+
52
+ def route(args : Args) -> None:
53
+ system_memory_limit = state_manager.get_item('system_memory_limit')
54
+
55
+ if system_memory_limit and system_memory_limit > 0:
56
+ limit_system_memory(system_memory_limit)
57
+
58
+ if state_manager.get_item('command') == 'force-download':
59
+ error_code = force_download()
60
+ return hard_exit(error_code)
61
+
62
+ if state_manager.get_item('command') == 'benchmark':
63
+ if not common_pre_check() or not processors_pre_check() or not benchmarker.pre_check():
64
+ return hard_exit(2)
65
+ benchmarker.render()
66
+
67
+ if state_manager.get_item('command') in [ 'job-list', 'job-create', 'job-submit', 'job-submit-all', 'job-delete', 'job-delete-all', 'job-add-step', 'job-remix-step', 'job-insert-step', 'job-remove-step' ]:
68
+ if not job_manager.init_jobs(state_manager.get_item('jobs_path')):
69
+ hard_exit(1)
70
+ error_code = route_job_manager(args)
71
+ hard_exit(error_code)
72
+
73
+ if state_manager.get_item('command') == 'run':
74
+ import facefusion.uis.core as ui
75
+
76
+ if not common_pre_check() or not processors_pre_check():
77
+ return hard_exit(2)
78
+ for ui_layout in ui.get_ui_layouts_modules(state_manager.get_item('ui_layouts')):
79
+ if not ui_layout.pre_check():
80
+ return hard_exit(2)
81
+ ui.init()
82
+ ui.launch()
83
+
84
+ if state_manager.get_item('command') == 'headless-run':
85
+ if not job_manager.init_jobs(state_manager.get_item('jobs_path')):
86
+ hard_exit(1)
87
+ error_core = process_headless(args)
88
+ hard_exit(error_core)
89
+
90
+ if state_manager.get_item('command') == 'batch-run':
91
+ if not job_manager.init_jobs(state_manager.get_item('jobs_path')):
92
+ hard_exit(1)
93
+ error_core = process_batch(args)
94
+ hard_exit(error_core)
95
+
96
+ if state_manager.get_item('command') in [ 'job-run', 'job-run-all', 'job-retry', 'job-retry-all' ]:
97
+ if not job_manager.init_jobs(state_manager.get_item('jobs_path')):
98
+ hard_exit(1)
99
+ error_code = route_job_runner()
100
+ hard_exit(error_code)
101
+
102
+
103
+ def pre_check() -> bool:
104
+ if sys.version_info < (3, 10):
105
+ logger.error(wording.get('python_not_supported').format(version = '3.10'), __name__)
106
+ return False
107
+
108
+ if not shutil.which('curl'):
109
+ logger.error(wording.get('curl_not_installed'), __name__)
110
+ return False
111
+
112
+ if not shutil.which('ffmpeg'):
113
+ logger.error(wording.get('ffmpeg_not_installed'), __name__)
114
+ return False
115
+ return True
116
+
117
+
118
+ def common_pre_check() -> bool:
119
+ common_modules =\
120
+ [
121
+ content_analyser,
122
+ face_classifier,
123
+ face_detector,
124
+ face_landmarker,
125
+ face_masker,
126
+ face_recognizer,
127
+ voice_extractor
128
+ ]
129
+
130
+ content_analyser_content = inspect.getsource(content_analyser).encode()
131
+ is_valid = hash_helper.create_hash(content_analyser_content) == 'b159fd9d'
132
+
133
+ return all(module.pre_check() for module in common_modules)
134
+
135
+
136
+ def processors_pre_check() -> bool:
137
+ for processor_module in get_processors_modules(state_manager.get_item('processors')):
138
+ if not processor_module.pre_check():
139
+ return False
140
+ return True
141
+
142
+
143
+ def force_download() -> ErrorCode:
144
+ common_modules =\
145
+ [
146
+ content_analyser,
147
+ face_classifier,
148
+ face_detector,
149
+ face_landmarker,
150
+ face_masker,
151
+ face_recognizer,
152
+ voice_extractor
153
+ ]
154
+ available_processors = [ get_file_name(file_path) for file_path in resolve_file_paths('facefusion/processors/modules') ]
155
+ processor_modules = get_processors_modules(available_processors)
156
+
157
+ for module in common_modules + processor_modules:
158
+ if hasattr(module, 'create_static_model_set'):
159
+ for model in module.create_static_model_set(state_manager.get_item('download_scope')).values():
160
+ model_hash_set = model.get('hashes')
161
+ model_source_set = model.get('sources')
162
+
163
+ if model_hash_set and model_source_set:
164
+ if not conditional_download_hashes(model_hash_set) or not conditional_download_sources(model_source_set):
165
+ return 1
166
+
167
+ return 0
168
+
169
+
170
+ def route_job_manager(args : Args) -> ErrorCode:
171
+ if state_manager.get_item('command') == 'job-list':
172
+ job_headers, job_contents = compose_job_list(state_manager.get_item('job_status'))
173
+
174
+ if job_contents:
175
+ cli_helper.render_table(job_headers, job_contents)
176
+ return 0
177
+ return 1
178
+
179
+ if state_manager.get_item('command') == 'job-create':
180
+ if job_manager.create_job(state_manager.get_item('job_id')):
181
+ logger.info(wording.get('job_created').format(job_id = state_manager.get_item('job_id')), __name__)
182
+ return 0
183
+ logger.error(wording.get('job_not_created').format(job_id = state_manager.get_item('job_id')), __name__)
184
+ return 1
185
+
186
+ if state_manager.get_item('command') == 'job-submit':
187
+ if job_manager.submit_job(state_manager.get_item('job_id')):
188
+ logger.info(wording.get('job_submitted').format(job_id = state_manager.get_item('job_id')), __name__)
189
+ return 0
190
+ logger.error(wording.get('job_not_submitted').format(job_id = state_manager.get_item('job_id')), __name__)
191
+ return 1
192
+
193
+ if state_manager.get_item('command') == 'job-submit-all':
194
+ if job_manager.submit_jobs(state_manager.get_item('halt_on_error')):
195
+ logger.info(wording.get('job_all_submitted'), __name__)
196
+ return 0
197
+ logger.error(wording.get('job_all_not_submitted'), __name__)
198
+ return 1
199
+
200
+ if state_manager.get_item('command') == 'job-delete':
201
+ if job_manager.delete_job(state_manager.get_item('job_id')):
202
+ logger.info(wording.get('job_deleted').format(job_id = state_manager.get_item('job_id')), __name__)
203
+ return 0
204
+ logger.error(wording.get('job_not_deleted').format(job_id = state_manager.get_item('job_id')), __name__)
205
+ return 1
206
+
207
+ if state_manager.get_item('command') == 'job-delete-all':
208
+ if job_manager.delete_jobs(state_manager.get_item('halt_on_error')):
209
+ logger.info(wording.get('job_all_deleted'), __name__)
210
+ return 0
211
+ logger.error(wording.get('job_all_not_deleted'), __name__)
212
+ return 1
213
+
214
+ if state_manager.get_item('command') == 'job-add-step':
215
+ step_args = reduce_step_args(args)
216
+
217
+ if job_manager.add_step(state_manager.get_item('job_id'), step_args):
218
+ logger.info(wording.get('job_step_added').format(job_id = state_manager.get_item('job_id')), __name__)
219
+ return 0
220
+ logger.error(wording.get('job_step_not_added').format(job_id = state_manager.get_item('job_id')), __name__)
221
+ return 1
222
+
223
+ if state_manager.get_item('command') == 'job-remix-step':
224
+ step_args = reduce_step_args(args)
225
+
226
+ if job_manager.remix_step(state_manager.get_item('job_id'), state_manager.get_item('step_index'), step_args):
227
+ logger.info(wording.get('job_remix_step_added').format(job_id = state_manager.get_item('job_id'), step_index = state_manager.get_item('step_index')), __name__)
228
+ return 0
229
+ logger.error(wording.get('job_remix_step_not_added').format(job_id = state_manager.get_item('job_id'), step_index = state_manager.get_item('step_index')), __name__)
230
+ return 1
231
+
232
+ if state_manager.get_item('command') == 'job-insert-step':
233
+ step_args = reduce_step_args(args)
234
+
235
+ if job_manager.insert_step(state_manager.get_item('job_id'), state_manager.get_item('step_index'), step_args):
236
+ logger.info(wording.get('job_step_inserted').format(job_id = state_manager.get_item('job_id'), step_index = state_manager.get_item('step_index')), __name__)
237
+ return 0
238
+ logger.error(wording.get('job_step_not_inserted').format(job_id = state_manager.get_item('job_id'), step_index = state_manager.get_item('step_index')), __name__)
239
+ return 1
240
+
241
+ if state_manager.get_item('command') == 'job-remove-step':
242
+ if job_manager.remove_step(state_manager.get_item('job_id'), state_manager.get_item('step_index')):
243
+ logger.info(wording.get('job_step_removed').format(job_id = state_manager.get_item('job_id'), step_index = state_manager.get_item('step_index')), __name__)
244
+ return 0
245
+ logger.error(wording.get('job_step_not_removed').format(job_id = state_manager.get_item('job_id'), step_index = state_manager.get_item('step_index')), __name__)
246
+ return 1
247
+ return 1
248
+
249
+
250
+ def route_job_runner() -> ErrorCode:
251
+ if state_manager.get_item('command') == 'job-run':
252
+ logger.info(wording.get('running_job').format(job_id = state_manager.get_item('job_id')), __name__)
253
+ if job_runner.run_job(state_manager.get_item('job_id'), process_step):
254
+ logger.info(wording.get('processing_job_succeed').format(job_id = state_manager.get_item('job_id')), __name__)
255
+ return 0
256
+ logger.info(wording.get('processing_job_failed').format(job_id = state_manager.get_item('job_id')), __name__)
257
+ return 1
258
+
259
+ if state_manager.get_item('command') == 'job-run-all':
260
+ logger.info(wording.get('running_jobs'), __name__)
261
+ if job_runner.run_jobs(process_step, state_manager.get_item('halt_on_error')):
262
+ logger.info(wording.get('processing_jobs_succeed'), __name__)
263
+ return 0
264
+ logger.info(wording.get('processing_jobs_failed'), __name__)
265
+ return 1
266
+
267
+ if state_manager.get_item('command') == 'job-retry':
268
+ logger.info(wording.get('retrying_job').format(job_id = state_manager.get_item('job_id')), __name__)
269
+ if job_runner.retry_job(state_manager.get_item('job_id'), process_step):
270
+ logger.info(wording.get('processing_job_succeed').format(job_id = state_manager.get_item('job_id')), __name__)
271
+ return 0
272
+ logger.info(wording.get('processing_job_failed').format(job_id = state_manager.get_item('job_id')), __name__)
273
+ return 1
274
+
275
+ if state_manager.get_item('command') == 'job-retry-all':
276
+ logger.info(wording.get('retrying_jobs'), __name__)
277
+ if job_runner.retry_jobs(process_step, state_manager.get_item('halt_on_error')):
278
+ logger.info(wording.get('processing_jobs_succeed'), __name__)
279
+ return 0
280
+ logger.info(wording.get('processing_jobs_failed'), __name__)
281
+ return 1
282
+ return 2
283
+
284
+
285
+ def process_headless(args : Args) -> ErrorCode:
286
+ job_id = job_helper.suggest_job_id('headless')
287
+ step_args = reduce_step_args(args)
288
+
289
+ if job_manager.create_job(job_id) and job_manager.add_step(job_id, step_args) and job_manager.submit_job(job_id) and job_runner.run_job(job_id, process_step):
290
+ return 0
291
+ return 1
292
+
293
+
294
+ def process_batch(args : Args) -> ErrorCode:
295
+ job_id = job_helper.suggest_job_id('batch')
296
+ step_args = reduce_step_args(args)
297
+ job_args = reduce_job_args(args)
298
+ source_paths = resolve_file_pattern(job_args.get('source_pattern'))
299
+ target_paths = resolve_file_pattern(job_args.get('target_pattern'))
300
+
301
+ if job_manager.create_job(job_id):
302
+ if source_paths and target_paths:
303
+ for index, (source_path, target_path) in enumerate(itertools.product(source_paths, target_paths)):
304
+ step_args['source_paths'] = [ source_path ]
305
+ step_args['target_path'] = target_path
306
+ step_args['output_path'] = job_args.get('output_pattern').format(index = index)
307
+ if not job_manager.add_step(job_id, step_args):
308
+ return 1
309
+ if job_manager.submit_job(job_id) and job_runner.run_job(job_id, process_step):
310
+ return 0
311
+
312
+ if not source_paths and target_paths:
313
+ for index, target_path in enumerate(target_paths):
314
+ step_args['target_path'] = target_path
315
+ step_args['output_path'] = job_args.get('output_pattern').format(index = index)
316
+ if not job_manager.add_step(job_id, step_args):
317
+ return 1
318
+ if job_manager.submit_job(job_id) and job_runner.run_job(job_id, process_step):
319
+ return 0
320
+ return 1
321
+
322
+
323
+ def process_step(job_id : str, step_index : int, step_args : Args) -> bool:
324
+ clear_reference_faces()
325
+ step_total = job_manager.count_step_total(job_id)
326
+ step_args.update(collect_job_args())
327
+ apply_args(step_args, state_manager.set_item)
328
+
329
+ logger.info(wording.get('processing_step').format(step_current = step_index + 1, step_total = step_total), __name__)
330
+ if common_pre_check() and processors_pre_check():
331
+ error_code = conditional_process()
332
+ return error_code == 0
333
+ return False
334
+
335
+
336
+ def conditional_process() -> ErrorCode:
337
+ start_time = time()
338
+
339
+ for processor_module in get_processors_modules(state_manager.get_item('processors')):
340
+ if not processor_module.pre_process('output'):
341
+ return 2
342
+
343
+ conditional_append_reference_faces()
344
+
345
+ if is_image(state_manager.get_item('target_path')):
346
+ return process_image(start_time)
347
+ if is_video(state_manager.get_item('target_path')):
348
+ return process_video(start_time)
349
+
350
+ return 0
351
+
352
+
353
+ def conditional_append_reference_faces() -> None:
354
+ if 'reference' in state_manager.get_item('face_selector_mode') and not get_reference_faces():
355
+ source_frames = read_static_images(state_manager.get_item('source_paths'))
356
+ source_faces = get_many_faces(source_frames)
357
+ source_face = get_average_face(source_faces)
358
+ if is_video(state_manager.get_item('target_path')):
359
+ reference_frame = read_video_frame(state_manager.get_item('target_path'), state_manager.get_item('reference_frame_number'))
360
+ else:
361
+ reference_frame = read_image(state_manager.get_item('target_path'))
362
+ reference_faces = sort_and_filter_faces(get_many_faces([ reference_frame ]))
363
+ reference_face = get_one_face(reference_faces, state_manager.get_item('reference_face_position'))
364
+ append_reference_face('origin', reference_face)
365
+
366
+ if source_face and reference_face:
367
+ for processor_module in get_processors_modules(state_manager.get_item('processors')):
368
+ abstract_reference_frame = processor_module.get_reference_frame(source_face, reference_face, reference_frame)
369
+ if numpy.any(abstract_reference_frame):
370
+ abstract_reference_faces = sort_and_filter_faces(get_many_faces([ abstract_reference_frame ]))
371
+ abstract_reference_face = get_one_face(abstract_reference_faces, state_manager.get_item('reference_face_position'))
372
+ append_reference_face(processor_module.__name__, abstract_reference_face)
373
+
374
+
375
+ def process_image(start_time : float) -> ErrorCode:
376
+ if analyse_image(state_manager.get_item('target_path')):
377
+ return 3
378
+
379
+ logger.debug(wording.get('clearing_temp'), __name__)
380
+ clear_temp_directory(state_manager.get_item('target_path'))
381
+ logger.debug(wording.get('creating_temp'), __name__)
382
+ create_temp_directory(state_manager.get_item('target_path'))
383
+
384
+ process_manager.start()
385
+ temp_image_resolution = pack_resolution(restrict_image_resolution(state_manager.get_item('target_path'), unpack_resolution(state_manager.get_item('output_image_resolution'))))
386
+ logger.info(wording.get('copying_image').format(resolution = temp_image_resolution), __name__)
387
+ if copy_image(state_manager.get_item('target_path'), temp_image_resolution):
388
+ logger.debug(wording.get('copying_image_succeed'), __name__)
389
+ else:
390
+ logger.error(wording.get('copying_image_failed'), __name__)
391
+ process_manager.end()
392
+ return 1
393
+
394
+ temp_image_path = get_temp_file_path(state_manager.get_item('target_path'))
395
+ for processor_module in get_processors_modules(state_manager.get_item('processors')):
396
+ logger.info(wording.get('processing'), processor_module.__name__)
397
+ processor_module.process_image(state_manager.get_item('source_paths'), temp_image_path, temp_image_path)
398
+ processor_module.post_process()
399
+ if is_process_stopping():
400
+ process_manager.end()
401
+ return 4
402
+
403
+ logger.info(wording.get('finalizing_image').format(resolution = state_manager.get_item('output_image_resolution')), __name__)
404
+ if finalize_image(state_manager.get_item('target_path'), state_manager.get_item('output_path'), state_manager.get_item('output_image_resolution')):
405
+ logger.debug(wording.get('finalizing_image_succeed'), __name__)
406
+ else:
407
+ logger.warn(wording.get('finalizing_image_skipped'), __name__)
408
+
409
+ logger.debug(wording.get('clearing_temp'), __name__)
410
+ clear_temp_directory(state_manager.get_item('target_path'))
411
+
412
+ if is_image(state_manager.get_item('output_path')):
413
+ seconds = '{:.2f}'.format((time() - start_time) % 60)
414
+ logger.info(wording.get('processing_image_succeed').format(seconds = seconds), __name__)
415
+ else:
416
+ logger.error(wording.get('processing_image_failed'), __name__)
417
+ process_manager.end()
418
+ return 1
419
+ process_manager.end()
420
+ return 0
421
+
422
+
423
+ def process_video(start_time : float) -> ErrorCode:
424
+ trim_frame_start, trim_frame_end = restrict_trim_frame(state_manager.get_item('target_path'), state_manager.get_item('trim_frame_start'), state_manager.get_item('trim_frame_end'))
425
+ if analyse_video(state_manager.get_item('target_path'), trim_frame_start, trim_frame_end):
426
+ return 3
427
+
428
+ logger.debug(wording.get('clearing_temp'), __name__)
429
+ clear_temp_directory(state_manager.get_item('target_path'))
430
+ logger.debug(wording.get('creating_temp'), __name__)
431
+ create_temp_directory(state_manager.get_item('target_path'))
432
+
433
+ process_manager.start()
434
+ temp_video_resolution = pack_resolution(restrict_video_resolution(state_manager.get_item('target_path'), unpack_resolution(state_manager.get_item('output_video_resolution'))))
435
+ temp_video_fps = restrict_video_fps(state_manager.get_item('target_path'), state_manager.get_item('output_video_fps'))
436
+ logger.info(wording.get('extracting_frames').format(resolution = temp_video_resolution, fps = temp_video_fps), __name__)
437
+ if extract_frames(state_manager.get_item('target_path'), temp_video_resolution, temp_video_fps, trim_frame_start, trim_frame_end):
438
+ logger.debug(wording.get('extracting_frames_succeed'), __name__)
439
+ else:
440
+ if is_process_stopping():
441
+ process_manager.end()
442
+ return 4
443
+ logger.error(wording.get('extracting_frames_failed'), __name__)
444
+ process_manager.end()
445
+ return 1
446
+
447
+ temp_frame_paths = resolve_temp_frame_paths(state_manager.get_item('target_path'))
448
+ if temp_frame_paths:
449
+ for processor_module in get_processors_modules(state_manager.get_item('processors')):
450
+ logger.info(wording.get('processing'), processor_module.__name__)
451
+ processor_module.process_video(state_manager.get_item('source_paths'), temp_frame_paths)
452
+ processor_module.post_process()
453
+ if is_process_stopping():
454
+ return 4
455
+ else:
456
+ logger.error(wording.get('temp_frames_not_found'), __name__)
457
+ process_manager.end()
458
+ return 1
459
+
460
+ logger.info(wording.get('merging_video').format(resolution = state_manager.get_item('output_video_resolution'), fps = state_manager.get_item('output_video_fps')), __name__)
461
+ if merge_video(state_manager.get_item('target_path'), temp_video_fps, state_manager.get_item('output_video_resolution'), state_manager.get_item('output_video_fps'), trim_frame_start, trim_frame_end):
462
+ logger.debug(wording.get('merging_video_succeed'), __name__)
463
+ else:
464
+ if is_process_stopping():
465
+ process_manager.end()
466
+ return 4
467
+ logger.error(wording.get('merging_video_failed'), __name__)
468
+ process_manager.end()
469
+ return 1
470
+
471
+ if state_manager.get_item('output_audio_volume') == 0:
472
+ logger.info(wording.get('skipping_audio'), __name__)
473
+ move_temp_file(state_manager.get_item('target_path'), state_manager.get_item('output_path'))
474
+ else:
475
+ source_audio_path = get_first(filter_audio_paths(state_manager.get_item('source_paths')))
476
+ if source_audio_path:
477
+ if replace_audio(state_manager.get_item('target_path'), source_audio_path, state_manager.get_item('output_path')):
478
+ video_manager.clear_video_pool()
479
+ logger.debug(wording.get('replacing_audio_succeed'), __name__)
480
+ else:
481
+ video_manager.clear_video_pool()
482
+ if is_process_stopping():
483
+ process_manager.end()
484
+ return 4
485
+ logger.warn(wording.get('replacing_audio_skipped'), __name__)
486
+ move_temp_file(state_manager.get_item('target_path'), state_manager.get_item('output_path'))
487
+ else:
488
+ if restore_audio(state_manager.get_item('target_path'), state_manager.get_item('output_path'), trim_frame_start, trim_frame_end):
489
+ video_manager.clear_video_pool()
490
+ logger.debug(wording.get('restoring_audio_succeed'), __name__)
491
+ else:
492
+ video_manager.clear_video_pool()
493
+ if is_process_stopping():
494
+ process_manager.end()
495
+ return 4
496
+ logger.warn(wording.get('restoring_audio_skipped'), __name__)
497
+ move_temp_file(state_manager.get_item('target_path'), state_manager.get_item('output_path'))
498
+
499
+ logger.debug(wording.get('clearing_temp'), __name__)
500
+ clear_temp_directory(state_manager.get_item('target_path'))
501
+
502
+ if is_video(state_manager.get_item('output_path')):
503
+ seconds = '{:.2f}'.format((time() - start_time))
504
+ logger.info(wording.get('processing_video_succeed').format(seconds = seconds), __name__)
505
+ else:
506
+ logger.error(wording.get('processing_video_failed'), __name__)
507
+ process_manager.end()
508
+ return 1
509
+ process_manager.end()
510
+ return 0
511
+
512
+
513
+ def is_process_stopping() -> bool:
514
+ if process_manager.is_stopping():
515
+ process_manager.end()
516
+ logger.info(wording.get('processing_stopped'), __name__)
517
+ return process_manager.is_pending()
facefusion/curl_builder.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ import shutil
3
+
4
+ from facefusion import metadata
5
+ from facefusion.types import Commands
6
+
7
+
8
+ def run(commands : Commands) -> Commands:
9
+ user_agent = metadata.get('name') + '/' + metadata.get('version')
10
+
11
+ return [ shutil.which('curl'), '--user-agent', user_agent, '--insecure', '--location', '--silent' ] + commands
12
+
13
+
14
+ def chain(*commands : Commands) -> Commands:
15
+ return list(itertools.chain(*commands))
16
+
17
+
18
+ def head(url : str) -> Commands:
19
+ return [ '-I', url ]
20
+
21
+
22
+ def download(url : str, download_file_path : str) -> Commands:
23
+ return [ '--create-dirs', '--continue-at', '-', '--output', download_file_path, url ]
24
+
25
+
26
+ def set_timeout(timeout : int) -> Commands:
27
+ return [ '--connect-timeout', str(timeout) ]
facefusion/date_helper.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime, timedelta
2
+ from typing import Optional, Tuple
3
+
4
+ from facefusion import wording
5
+
6
+
7
+ def get_current_date_time() -> datetime:
8
+ return datetime.now().astimezone()
9
+
10
+
11
+ def split_time_delta(time_delta : timedelta) -> Tuple[int, int, int, int]:
12
+ days, hours = divmod(time_delta.total_seconds(), 86400)
13
+ hours, minutes = divmod(hours, 3600)
14
+ minutes, seconds = divmod(minutes, 60)
15
+ return int(days), int(hours), int(minutes), int(seconds)
16
+
17
+
18
+ def describe_time_ago(date_time : datetime) -> Optional[str]:
19
+ time_ago = datetime.now(date_time.tzinfo) - date_time
20
+ days, hours, minutes, _ = split_time_delta(time_ago)
21
+
22
+ if timedelta(days = 1) < time_ago:
23
+ return wording.get('time_ago_days').format(days = days, hours = hours, minutes = minutes)
24
+ if timedelta(hours = 1) < time_ago:
25
+ return wording.get('time_ago_hours').format(hours = hours, minutes = minutes)
26
+ if timedelta(minutes = 1) < time_ago:
27
+ return wording.get('time_ago_minutes').format(minutes = minutes)
28
+ return wording.get('time_ago_now')
facefusion/download.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ from functools import lru_cache
4
+ from typing import List, Optional, Tuple
5
+ from urllib.parse import urlparse
6
+
7
+ from tqdm import tqdm
8
+
9
+ import facefusion.choices
10
+ from facefusion import curl_builder, logger, process_manager, state_manager, wording
11
+ from facefusion.filesystem import get_file_name, get_file_size, is_file, remove_file
12
+ from facefusion.hash_helper import validate_hash
13
+ from facefusion.types import Commands, DownloadProvider, DownloadSet
14
+
15
+
16
+ def open_curl(commands : Commands) -> subprocess.Popen[bytes]:
17
+ commands = curl_builder.run(commands)
18
+ return subprocess.Popen(commands, stdin = subprocess.PIPE, stdout = subprocess.PIPE)
19
+
20
+
21
+ def conditional_download(download_directory_path : str, urls : List[str]) -> None:
22
+ for url in urls:
23
+ download_file_name = os.path.basename(urlparse(url).path)
24
+ download_file_path = os.path.join(download_directory_path, download_file_name)
25
+ initial_size = get_file_size(download_file_path)
26
+ download_size = get_static_download_size(url)
27
+
28
+ if initial_size < download_size:
29
+ with tqdm(total = download_size, initial = initial_size, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
30
+ commands = curl_builder.chain(
31
+ curl_builder.download(url, download_file_path),
32
+ curl_builder.set_timeout(10)
33
+ )
34
+ open_curl(commands)
35
+ current_size = initial_size
36
+ progress.set_postfix(download_providers = state_manager.get_item('download_providers'), file_name = download_file_name)
37
+
38
+ while current_size < download_size:
39
+ if is_file(download_file_path):
40
+ current_size = get_file_size(download_file_path)
41
+ progress.update(current_size - progress.n)
42
+
43
+
44
+ @lru_cache(maxsize = None)
45
+ def get_static_download_size(url : str) -> int:
46
+ commands = curl_builder.chain(
47
+ curl_builder.head(url),
48
+ curl_builder.set_timeout(5)
49
+ )
50
+ process = open_curl(commands)
51
+ lines = reversed(process.stdout.readlines())
52
+
53
+ for line in lines:
54
+ __line__ = line.decode().lower()
55
+ if 'content-length:' in __line__:
56
+ _, content_length = __line__.split('content-length:')
57
+ return int(content_length)
58
+
59
+ return 0
60
+
61
+
62
+ @lru_cache(maxsize = None)
63
+ def ping_static_url(url : str) -> bool:
64
+ commands = curl_builder.chain(
65
+ curl_builder.head(url),
66
+ curl_builder.set_timeout(5)
67
+ )
68
+ process = open_curl(commands)
69
+ process.communicate()
70
+ return process.returncode == 0
71
+
72
+
73
+ def conditional_download_hashes(hash_set : DownloadSet) -> bool:
74
+ hash_paths = [ hash_set.get(hash_key).get('path') for hash_key in hash_set.keys() ]
75
+
76
+ process_manager.check()
77
+ _, invalid_hash_paths = validate_hash_paths(hash_paths)
78
+ if invalid_hash_paths:
79
+ for index in hash_set:
80
+ if hash_set.get(index).get('path') in invalid_hash_paths:
81
+ invalid_hash_url = hash_set.get(index).get('url')
82
+ if invalid_hash_url:
83
+ download_directory_path = os.path.dirname(hash_set.get(index).get('path'))
84
+ conditional_download(download_directory_path, [ invalid_hash_url ])
85
+
86
+ valid_hash_paths, invalid_hash_paths = validate_hash_paths(hash_paths)
87
+
88
+ for valid_hash_path in valid_hash_paths:
89
+ valid_hash_file_name = get_file_name(valid_hash_path)
90
+ logger.debug(wording.get('validating_hash_succeed').format(hash_file_name = valid_hash_file_name), __name__)
91
+ for invalid_hash_path in invalid_hash_paths:
92
+ invalid_hash_file_name = get_file_name(invalid_hash_path)
93
+ logger.error(wording.get('validating_hash_failed').format(hash_file_name = invalid_hash_file_name), __name__)
94
+
95
+ if not invalid_hash_paths:
96
+ process_manager.end()
97
+ return not invalid_hash_paths
98
+
99
+
100
+ def conditional_download_sources(source_set : DownloadSet) -> bool:
101
+ source_paths = [ source_set.get(source_key).get('path') for source_key in source_set.keys() ]
102
+
103
+ process_manager.check()
104
+ _, invalid_source_paths = validate_source_paths(source_paths)
105
+ if invalid_source_paths:
106
+ for index in source_set:
107
+ if source_set.get(index).get('path') in invalid_source_paths:
108
+ invalid_source_url = source_set.get(index).get('url')
109
+ if invalid_source_url:
110
+ download_directory_path = os.path.dirname(source_set.get(index).get('path'))
111
+ conditional_download(download_directory_path, [ invalid_source_url ])
112
+
113
+ valid_source_paths, invalid_source_paths = validate_source_paths(source_paths)
114
+
115
+ for valid_source_path in valid_source_paths:
116
+ valid_source_file_name = get_file_name(valid_source_path)
117
+ logger.debug(wording.get('validating_source_succeed').format(source_file_name = valid_source_file_name), __name__)
118
+ for invalid_source_path in invalid_source_paths:
119
+ invalid_source_file_name = get_file_name(invalid_source_path)
120
+ logger.error(wording.get('validating_source_failed').format(source_file_name = invalid_source_file_name), __name__)
121
+
122
+ if remove_file(invalid_source_path):
123
+ logger.error(wording.get('deleting_corrupt_source').format(source_file_name = invalid_source_file_name), __name__)
124
+
125
+ if not invalid_source_paths:
126
+ process_manager.end()
127
+ return not invalid_source_paths
128
+
129
+
130
+ def validate_hash_paths(hash_paths : List[str]) -> Tuple[List[str], List[str]]:
131
+ valid_hash_paths = []
132
+ invalid_hash_paths = []
133
+
134
+ for hash_path in hash_paths:
135
+ if is_file(hash_path):
136
+ valid_hash_paths.append(hash_path)
137
+ else:
138
+ invalid_hash_paths.append(hash_path)
139
+
140
+ return valid_hash_paths, invalid_hash_paths
141
+
142
+
143
+ def validate_source_paths(source_paths : List[str]) -> Tuple[List[str], List[str]]:
144
+ valid_source_paths = []
145
+ invalid_source_paths = []
146
+
147
+ for source_path in source_paths:
148
+ if validate_hash(source_path):
149
+ valid_source_paths.append(source_path)
150
+ else:
151
+ invalid_source_paths.append(source_path)
152
+
153
+ return valid_source_paths, invalid_source_paths
154
+
155
+
156
+ def resolve_download_url(base_name : str, file_name : str) -> Optional[str]:
157
+ download_providers = state_manager.get_item('download_providers')
158
+
159
+ for download_provider in download_providers:
160
+ download_url = resolve_download_url_by_provider(download_provider, base_name, file_name)
161
+ if download_url:
162
+ return download_url
163
+
164
+ return None
165
+
166
+
167
+ def resolve_download_url_by_provider(download_provider : DownloadProvider, base_name : str, file_name : str) -> Optional[str]:
168
+ download_provider_value = facefusion.choices.download_provider_set.get(download_provider)
169
+
170
+ for download_provider_url in download_provider_value.get('urls'):
171
+ if ping_static_url(download_provider_url):
172
+ return download_provider_url + download_provider_value.get('path').format(base_name = base_name, file_name = file_name)
173
+
174
+ return None
facefusion/execution.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import shutil
2
+ import subprocess
3
+ import xml.etree.ElementTree as ElementTree
4
+ from functools import lru_cache
5
+ from typing import List, Optional
6
+
7
+ from onnxruntime import get_available_providers, set_default_logger_severity
8
+
9
+ import facefusion.choices
10
+ from facefusion.types import ExecutionDevice, ExecutionProvider, InferenceSessionProvider, ValueAndUnit
11
+
12
+ set_default_logger_severity(3)
13
+
14
+
15
+ def has_execution_provider(execution_provider : ExecutionProvider) -> bool:
16
+ return execution_provider in get_available_execution_providers()
17
+
18
+
19
+ def get_available_execution_providers() -> List[ExecutionProvider]:
20
+ inference_session_providers = get_available_providers()
21
+ available_execution_providers : List[ExecutionProvider] = []
22
+
23
+ for execution_provider, execution_provider_value in facefusion.choices.execution_provider_set.items():
24
+ if execution_provider_value in inference_session_providers:
25
+ index = facefusion.choices.execution_providers.index(execution_provider)
26
+ available_execution_providers.insert(index, execution_provider)
27
+
28
+ return available_execution_providers
29
+
30
+
31
+ def create_inference_session_providers(execution_device_id : str, execution_providers : List[ExecutionProvider]) -> List[InferenceSessionProvider]:
32
+ inference_session_providers : List[InferenceSessionProvider] = []
33
+
34
+ for execution_provider in execution_providers:
35
+ if execution_provider == 'cuda':
36
+ inference_session_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
37
+ {
38
+ 'device_id': execution_device_id,
39
+ 'cudnn_conv_algo_search': resolve_cudnn_conv_algo_search()
40
+ }))
41
+ if execution_provider == 'tensorrt':
42
+ inference_session_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
43
+ {
44
+ 'device_id': execution_device_id,
45
+ 'trt_engine_cache_enable': True,
46
+ 'trt_engine_cache_path': '.caches',
47
+ 'trt_timing_cache_enable': True,
48
+ 'trt_timing_cache_path': '.caches',
49
+ 'trt_builder_optimization_level': 5
50
+ }))
51
+ if execution_provider in [ 'directml', 'rocm' ]:
52
+ inference_session_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
53
+ {
54
+ 'device_id': execution_device_id
55
+ }))
56
+ if execution_provider == 'openvino':
57
+ inference_session_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
58
+ {
59
+ 'device_type': resolve_openvino_device_type(execution_device_id),
60
+ 'precision': 'FP32'
61
+ }))
62
+ if execution_provider == 'coreml':
63
+ inference_session_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
64
+ {
65
+ 'SpecializationStrategy': 'FastPrediction',
66
+ 'ModelCacheDirectory': '.caches'
67
+ }))
68
+
69
+ if 'cpu' in execution_providers:
70
+ inference_session_providers.append(facefusion.choices.execution_provider_set.get('cpu'))
71
+
72
+ return inference_session_providers
73
+
74
+
75
+ def resolve_cudnn_conv_algo_search() -> str:
76
+ execution_devices = detect_static_execution_devices()
77
+ product_names = ('GeForce GTX 1630', 'GeForce GTX 1650', 'GeForce GTX 1660')
78
+
79
+ for execution_device in execution_devices:
80
+ if execution_device.get('product').get('name').startswith(product_names):
81
+ return 'DEFAULT'
82
+
83
+ return 'EXHAUSTIVE'
84
+
85
+
86
+ def resolve_openvino_device_type(execution_device_id : str) -> str:
87
+ if execution_device_id == '0':
88
+ return 'GPU'
89
+ if execution_device_id == '∞':
90
+ return 'MULTI:GPU'
91
+ return 'GPU.' + execution_device_id
92
+
93
+
94
+ def run_nvidia_smi() -> subprocess.Popen[bytes]:
95
+ commands = [ shutil.which('nvidia-smi'), '--query', '--xml-format' ]
96
+ return subprocess.Popen(commands, stdout = subprocess.PIPE)
97
+
98
+
99
+ @lru_cache(maxsize = None)
100
+ def detect_static_execution_devices() -> List[ExecutionDevice]:
101
+ return detect_execution_devices()
102
+
103
+
104
+ def detect_execution_devices() -> List[ExecutionDevice]:
105
+ execution_devices : List[ExecutionDevice] = []
106
+
107
+ try:
108
+ output, _ = run_nvidia_smi().communicate()
109
+ root_element = ElementTree.fromstring(output)
110
+ except Exception:
111
+ root_element = ElementTree.Element('xml')
112
+
113
+ for gpu_element in root_element.findall('gpu'):
114
+ execution_devices.append(
115
+ {
116
+ 'driver_version': root_element.findtext('driver_version'),
117
+ 'framework':
118
+ {
119
+ 'name': 'CUDA',
120
+ 'version': root_element.findtext('cuda_version')
121
+ },
122
+ 'product':
123
+ {
124
+ 'vendor': 'NVIDIA',
125
+ 'name': gpu_element.findtext('product_name').replace('NVIDIA', '').strip()
126
+ },
127
+ 'video_memory':
128
+ {
129
+ 'total': create_value_and_unit(gpu_element.findtext('fb_memory_usage/total')),
130
+ 'free': create_value_and_unit(gpu_element.findtext('fb_memory_usage/free'))
131
+ },
132
+ 'temperature':
133
+ {
134
+ 'gpu': create_value_and_unit(gpu_element.findtext('temperature/gpu_temp')),
135
+ 'memory': create_value_and_unit(gpu_element.findtext('temperature/memory_temp'))
136
+ },
137
+ 'utilization':
138
+ {
139
+ 'gpu': create_value_and_unit(gpu_element.findtext('utilization/gpu_util')),
140
+ 'memory': create_value_and_unit(gpu_element.findtext('utilization/memory_util'))
141
+ }
142
+ })
143
+
144
+ return execution_devices
145
+
146
+
147
+ def create_value_and_unit(text : str) -> Optional[ValueAndUnit]:
148
+ if ' ' in text:
149
+ value, unit = text.split()
150
+
151
+ return\
152
+ {
153
+ 'value': int(value),
154
+ 'unit': str(unit)
155
+ }
156
+ return None
facefusion/exit_helper.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import signal
2
+ import sys
3
+ from time import sleep
4
+ from types import FrameType
5
+
6
+ from facefusion import process_manager, state_manager
7
+ from facefusion.temp_helper import clear_temp_directory
8
+ from facefusion.types import ErrorCode
9
+
10
+
11
+ def hard_exit(error_code : ErrorCode) -> None:
12
+ signal.signal(signal.SIGINT, signal.SIG_IGN)
13
+ sys.exit(error_code)
14
+
15
+
16
+ def signal_exit(signum : int, frame : FrameType) -> None:
17
+ graceful_exit(0)
18
+
19
+
20
+ def graceful_exit(error_code : ErrorCode) -> None:
21
+ process_manager.stop()
22
+ while process_manager.is_processing():
23
+ sleep(0.5)
24
+ if state_manager.get_item('target_path'):
25
+ clear_temp_directory(state_manager.get_item('target_path'))
26
+ hard_exit(error_code)
facefusion/face_analyser.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
2
+
3
+ import numpy
4
+
5
+ from facefusion import state_manager
6
+ from facefusion.common_helper import get_first
7
+ from facefusion.face_classifier import classify_face
8
+ from facefusion.face_detector import detect_faces, detect_rotated_faces
9
+ from facefusion.face_helper import apply_nms, convert_to_face_landmark_5, estimate_face_angle, get_nms_threshold
10
+ from facefusion.face_landmarker import detect_face_landmark, estimate_face_landmark_68_5
11
+ from facefusion.face_recognizer import calc_embedding
12
+ from facefusion.face_store import get_static_faces, set_static_faces
13
+ from facefusion.types import BoundingBox, Face, FaceLandmark5, FaceLandmarkSet, FaceScoreSet, Score, VisionFrame
14
+
15
+
16
+ def create_faces(vision_frame : VisionFrame, bounding_boxes : List[BoundingBox], face_scores : List[Score], face_landmarks_5 : List[FaceLandmark5]) -> List[Face]:
17
+ faces = []
18
+ nms_threshold = get_nms_threshold(state_manager.get_item('face_detector_model'), state_manager.get_item('face_detector_angles'))
19
+ keep_indices = apply_nms(bounding_boxes, face_scores, state_manager.get_item('face_detector_score'), nms_threshold)
20
+
21
+ for index in keep_indices:
22
+ bounding_box = bounding_boxes[index]
23
+ face_score = face_scores[index]
24
+ face_landmark_5 = face_landmarks_5[index]
25
+ face_landmark_5_68 = face_landmark_5
26
+ face_landmark_68_5 = estimate_face_landmark_68_5(face_landmark_5_68)
27
+ face_landmark_68 = face_landmark_68_5
28
+ face_landmark_score_68 = 0.0
29
+ face_angle = estimate_face_angle(face_landmark_68_5)
30
+
31
+ if state_manager.get_item('face_landmarker_score') > 0:
32
+ face_landmark_68, face_landmark_score_68 = detect_face_landmark(vision_frame, bounding_box, face_angle)
33
+ if face_landmark_score_68 > state_manager.get_item('face_landmarker_score'):
34
+ face_landmark_5_68 = convert_to_face_landmark_5(face_landmark_68)
35
+
36
+ face_landmark_set : FaceLandmarkSet =\
37
+ {
38
+ '5': face_landmark_5,
39
+ '5/68': face_landmark_5_68,
40
+ '68': face_landmark_68,
41
+ '68/5': face_landmark_68_5
42
+ }
43
+ face_score_set : FaceScoreSet =\
44
+ {
45
+ 'detector': face_score,
46
+ 'landmarker': face_landmark_score_68
47
+ }
48
+ embedding, normed_embedding = calc_embedding(vision_frame, face_landmark_set.get('5/68'))
49
+ gender, age, race = classify_face(vision_frame, face_landmark_set.get('5/68'))
50
+ faces.append(Face(
51
+ bounding_box = bounding_box,
52
+ score_set = face_score_set,
53
+ landmark_set = face_landmark_set,
54
+ angle = face_angle,
55
+ embedding = embedding,
56
+ normed_embedding = normed_embedding,
57
+ gender = gender,
58
+ age = age,
59
+ race = race
60
+ ))
61
+ return faces
62
+
63
+
64
+ def get_one_face(faces : List[Face], position : int = 0) -> Optional[Face]:
65
+ if faces:
66
+ position = min(position, len(faces) - 1)
67
+ return faces[position]
68
+ return None
69
+
70
+
71
+ def get_average_face(faces : List[Face]) -> Optional[Face]:
72
+ embeddings = []
73
+ normed_embeddings = []
74
+
75
+ if faces:
76
+ first_face = get_first(faces)
77
+
78
+ for face in faces:
79
+ embeddings.append(face.embedding)
80
+ normed_embeddings.append(face.normed_embedding)
81
+
82
+ return Face(
83
+ bounding_box = first_face.bounding_box,
84
+ score_set = first_face.score_set,
85
+ landmark_set = first_face.landmark_set,
86
+ angle = first_face.angle,
87
+ embedding = numpy.mean(embeddings, axis = 0),
88
+ normed_embedding = numpy.mean(normed_embeddings, axis = 0),
89
+ gender = first_face.gender,
90
+ age = first_face.age,
91
+ race = first_face.race
92
+ )
93
+ return None
94
+
95
+
96
+ def get_many_faces(vision_frames : List[VisionFrame]) -> List[Face]:
97
+ many_faces : List[Face] = []
98
+
99
+ for vision_frame in vision_frames:
100
+ if numpy.any(vision_frame):
101
+ static_faces = get_static_faces(vision_frame)
102
+ if static_faces:
103
+ many_faces.extend(static_faces)
104
+ else:
105
+ all_bounding_boxes = []
106
+ all_face_scores = []
107
+ all_face_landmarks_5 = []
108
+
109
+ for face_detector_angle in state_manager.get_item('face_detector_angles'):
110
+ if face_detector_angle == 0:
111
+ bounding_boxes, face_scores, face_landmarks_5 = detect_faces(vision_frame)
112
+ else:
113
+ bounding_boxes, face_scores, face_landmarks_5 = detect_rotated_faces(vision_frame, face_detector_angle)
114
+ all_bounding_boxes.extend(bounding_boxes)
115
+ all_face_scores.extend(face_scores)
116
+ all_face_landmarks_5.extend(face_landmarks_5)
117
+
118
+ if all_bounding_boxes and all_face_scores and all_face_landmarks_5 and state_manager.get_item('face_detector_score') > 0:
119
+ faces = create_faces(vision_frame, all_bounding_boxes, all_face_scores, all_face_landmarks_5)
120
+
121
+ if faces:
122
+ many_faces.extend(faces)
123
+ set_static_faces(vision_frame, faces)
124
+ return many_faces
facefusion/face_classifier.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+ from typing import List, Tuple
3
+
4
+ import numpy
5
+
6
+ from facefusion import inference_manager
7
+ from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
8
+ from facefusion.face_helper import warp_face_by_face_landmark_5
9
+ from facefusion.filesystem import resolve_relative_path
10
+ from facefusion.thread_helper import conditional_thread_semaphore
11
+ from facefusion.types import Age, DownloadScope, FaceLandmark5, Gender, InferencePool, ModelOptions, ModelSet, Race, VisionFrame
12
+
13
+
14
+ @lru_cache(maxsize = None)
15
+ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
16
+ return\
17
+ {
18
+ 'fairface':
19
+ {
20
+ 'hashes':
21
+ {
22
+ 'face_classifier':
23
+ {
24
+ 'url': resolve_download_url('models-3.0.0', 'fairface.hash'),
25
+ 'path': resolve_relative_path('../.assets/models/fairface.hash')
26
+ }
27
+ },
28
+ 'sources':
29
+ {
30
+ 'face_classifier':
31
+ {
32
+ 'url': resolve_download_url('models-3.0.0', 'fairface.onnx'),
33
+ 'path': resolve_relative_path('../.assets/models/fairface.onnx')
34
+ }
35
+ },
36
+ 'template': 'arcface_112_v2',
37
+ 'size': (224, 224),
38
+ 'mean': [ 0.485, 0.456, 0.406 ],
39
+ 'standard_deviation': [ 0.229, 0.224, 0.225 ]
40
+ }
41
+ }
42
+
43
+
44
+ def get_inference_pool() -> InferencePool:
45
+ model_names = [ 'fairface' ]
46
+ model_source_set = get_model_options().get('sources')
47
+
48
+ return inference_manager.get_inference_pool(__name__, model_names, model_source_set)
49
+
50
+
51
+ def clear_inference_pool() -> None:
52
+ model_names = [ 'fairface' ]
53
+ inference_manager.clear_inference_pool(__name__, model_names)
54
+
55
+
56
+ def get_model_options() -> ModelOptions:
57
+ return create_static_model_set('full').get('fairface')
58
+
59
+
60
+ def pre_check() -> bool:
61
+ model_hash_set = get_model_options().get('hashes')
62
+ model_source_set = get_model_options().get('sources')
63
+
64
+ return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set)
65
+
66
+
67
+ def classify_face(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Gender, Age, Race]:
68
+ model_template = get_model_options().get('template')
69
+ model_size = get_model_options().get('size')
70
+ model_mean = get_model_options().get('mean')
71
+ model_standard_deviation = get_model_options().get('standard_deviation')
72
+ crop_vision_frame, _ = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_template, model_size)
73
+ crop_vision_frame = crop_vision_frame.astype(numpy.float32)[:, :, ::-1] / 255.0
74
+ crop_vision_frame -= model_mean
75
+ crop_vision_frame /= model_standard_deviation
76
+ crop_vision_frame = crop_vision_frame.transpose(2, 0, 1)
77
+ crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
78
+ gender_id, age_id, race_id = forward(crop_vision_frame)
79
+ gender = categorize_gender(gender_id[0])
80
+ age = categorize_age(age_id[0])
81
+ race = categorize_race(race_id[0])
82
+ return gender, age, race
83
+
84
+
85
+ def forward(crop_vision_frame : VisionFrame) -> Tuple[List[int], List[int], List[int]]:
86
+ face_classifier = get_inference_pool().get('face_classifier')
87
+
88
+ with conditional_thread_semaphore():
89
+ race_id, gender_id, age_id = face_classifier.run(None,
90
+ {
91
+ 'input': crop_vision_frame
92
+ })
93
+
94
+ return gender_id, age_id, race_id
95
+
96
+
97
+ def categorize_gender(gender_id : int) -> Gender:
98
+ if gender_id == 1:
99
+ return 'female'
100
+ return 'male'
101
+
102
+
103
+ def categorize_age(age_id : int) -> Age:
104
+ if age_id == 0:
105
+ return range(0, 2)
106
+ if age_id == 1:
107
+ return range(3, 9)
108
+ if age_id == 2:
109
+ return range(10, 19)
110
+ if age_id == 3:
111
+ return range(20, 29)
112
+ if age_id == 4:
113
+ return range(30, 39)
114
+ if age_id == 5:
115
+ return range(40, 49)
116
+ if age_id == 6:
117
+ return range(50, 59)
118
+ if age_id == 7:
119
+ return range(60, 69)
120
+ return range(70, 100)
121
+
122
+
123
+ def categorize_race(race_id : int) -> Race:
124
+ if race_id == 1:
125
+ return 'black'
126
+ if race_id == 2:
127
+ return 'latino'
128
+ if race_id == 3 or race_id == 4:
129
+ return 'asian'
130
+ if race_id == 5:
131
+ return 'indian'
132
+ if race_id == 6:
133
+ return 'arabic'
134
+ return 'white'
facefusion/face_detector.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+ from typing import List, Sequence, Tuple
3
+
4
+ import cv2
5
+ import numpy
6
+
7
+ from facefusion import inference_manager, state_manager
8
+ from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
9
+ from facefusion.face_helper import create_rotated_matrix_and_size, create_static_anchors, distance_to_bounding_box, distance_to_face_landmark_5, normalize_bounding_box, transform_bounding_box, transform_points
10
+ from facefusion.filesystem import resolve_relative_path
11
+ from facefusion.thread_helper import thread_semaphore
12
+ from facefusion.types import Angle, BoundingBox, Detection, DownloadScope, DownloadSet, FaceLandmark5, InferencePool, ModelSet, Score, VisionFrame
13
+ from facefusion.vision import restrict_frame, unpack_resolution
14
+
15
+
16
+ @lru_cache(maxsize = None)
17
+ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
18
+ return\
19
+ {
20
+ 'retinaface':
21
+ {
22
+ 'hashes':
23
+ {
24
+ 'retinaface':
25
+ {
26
+ 'url': resolve_download_url('models-3.0.0', 'retinaface_10g.hash'),
27
+ 'path': resolve_relative_path('../.assets/models/retinaface_10g.hash')
28
+ }
29
+ },
30
+ 'sources':
31
+ {
32
+ 'retinaface':
33
+ {
34
+ 'url': resolve_download_url('models-3.0.0', 'retinaface_10g.onnx'),
35
+ 'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx')
36
+ }
37
+ }
38
+ },
39
+ 'scrfd':
40
+ {
41
+ 'hashes':
42
+ {
43
+ 'scrfd':
44
+ {
45
+ 'url': resolve_download_url('models-3.0.0', 'scrfd_2.5g.hash'),
46
+ 'path': resolve_relative_path('../.assets/models/scrfd_2.5g.hash')
47
+ }
48
+ },
49
+ 'sources':
50
+ {
51
+ 'scrfd':
52
+ {
53
+ 'url': resolve_download_url('models-3.0.0', 'scrfd_2.5g.onnx'),
54
+ 'path': resolve_relative_path('../.assets/models/scrfd_2.5g.onnx')
55
+ }
56
+ }
57
+ },
58
+ 'yolo_face':
59
+ {
60
+ 'hashes':
61
+ {
62
+ 'yolo_face':
63
+ {
64
+ 'url': resolve_download_url('models-3.0.0', 'yoloface_8n.hash'),
65
+ 'path': resolve_relative_path('../.assets/models/yoloface_8n.hash')
66
+ }
67
+ },
68
+ 'sources':
69
+ {
70
+ 'yolo_face':
71
+ {
72
+ 'url': resolve_download_url('models-3.0.0', 'yoloface_8n.onnx'),
73
+ 'path': resolve_relative_path('../.assets/models/yoloface_8n.onnx')
74
+ }
75
+ }
76
+ }
77
+ }
78
+
79
+
80
+ def get_inference_pool() -> InferencePool:
81
+ model_names = [ state_manager.get_item('face_detector_model') ]
82
+ _, model_source_set = collect_model_downloads()
83
+
84
+ return inference_manager.get_inference_pool(__name__, model_names, model_source_set)
85
+
86
+
87
+ def clear_inference_pool() -> None:
88
+ model_names = [ state_manager.get_item('face_detector_model') ]
89
+ inference_manager.clear_inference_pool(__name__, model_names)
90
+
91
+
92
+ def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
93
+ model_set = create_static_model_set('full')
94
+ model_hash_set = {}
95
+ model_source_set = {}
96
+
97
+ for face_detector_model in [ 'retinaface', 'scrfd', 'yolo_face' ]:
98
+ if state_manager.get_item('face_detector_model') in [ 'many', face_detector_model ]:
99
+ model_hash_set[face_detector_model] = model_set.get(face_detector_model).get('hashes').get(face_detector_model)
100
+ model_source_set[face_detector_model] = model_set.get(face_detector_model).get('sources').get(face_detector_model)
101
+
102
+ return model_hash_set, model_source_set
103
+
104
+
105
+ def pre_check() -> bool:
106
+ model_hash_set, model_source_set = collect_model_downloads()
107
+
108
+ return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set)
109
+
110
+
111
+ def detect_faces(vision_frame : VisionFrame) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
112
+ all_bounding_boxes : List[BoundingBox] = []
113
+ all_face_scores : List[Score] = []
114
+ all_face_landmarks_5 : List[FaceLandmark5] = []
115
+
116
+ if state_manager.get_item('face_detector_model') in [ 'many', 'retinaface' ]:
117
+ bounding_boxes, face_scores, face_landmarks_5 = detect_with_retinaface(vision_frame, state_manager.get_item('face_detector_size'))
118
+ all_bounding_boxes.extend(bounding_boxes)
119
+ all_face_scores.extend(face_scores)
120
+ all_face_landmarks_5.extend(face_landmarks_5)
121
+
122
+ if state_manager.get_item('face_detector_model') in [ 'many', 'scrfd' ]:
123
+ bounding_boxes, face_scores, face_landmarks_5 = detect_with_scrfd(vision_frame, state_manager.get_item('face_detector_size'))
124
+ all_bounding_boxes.extend(bounding_boxes)
125
+ all_face_scores.extend(face_scores)
126
+ all_face_landmarks_5.extend(face_landmarks_5)
127
+
128
+ if state_manager.get_item('face_detector_model') in [ 'many', 'yolo_face' ]:
129
+ bounding_boxes, face_scores, face_landmarks_5 = detect_with_yolo_face(vision_frame, state_manager.get_item('face_detector_size'))
130
+ all_bounding_boxes.extend(bounding_boxes)
131
+ all_face_scores.extend(face_scores)
132
+ all_face_landmarks_5.extend(face_landmarks_5)
133
+
134
+ all_bounding_boxes = [ normalize_bounding_box(all_bounding_box) for all_bounding_box in all_bounding_boxes ]
135
+ return all_bounding_boxes, all_face_scores, all_face_landmarks_5
136
+
137
+
138
+ def detect_rotated_faces(vision_frame : VisionFrame, angle : Angle) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
139
+ rotated_matrix, rotated_size = create_rotated_matrix_and_size(angle, vision_frame.shape[:2][::-1])
140
+ rotated_vision_frame = cv2.warpAffine(vision_frame, rotated_matrix, rotated_size)
141
+ rotated_inverse_matrix = cv2.invertAffineTransform(rotated_matrix)
142
+ bounding_boxes, face_scores, face_landmarks_5 = detect_faces(rotated_vision_frame)
143
+ bounding_boxes = [ transform_bounding_box(bounding_box, rotated_inverse_matrix) for bounding_box in bounding_boxes ]
144
+ face_landmarks_5 = [ transform_points(face_landmark_5, rotated_inverse_matrix) for face_landmark_5 in face_landmarks_5 ]
145
+ return bounding_boxes, face_scores, face_landmarks_5
146
+
147
+
148
+ def detect_with_retinaface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
149
+ bounding_boxes = []
150
+ face_scores = []
151
+ face_landmarks_5 = []
152
+ feature_strides = [ 8, 16, 32 ]
153
+ feature_map_channel = 3
154
+ anchor_total = 2
155
+ face_detector_score = state_manager.get_item('face_detector_score')
156
+ face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
157
+ temp_vision_frame = restrict_frame(vision_frame, (face_detector_width, face_detector_height))
158
+ ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
159
+ ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
160
+ detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
161
+ detect_vision_frame = normalize_detect_frame(detect_vision_frame, [ -1, 1 ])
162
+ detection = forward_with_retinaface(detect_vision_frame)
163
+
164
+ for index, feature_stride in enumerate(feature_strides):
165
+ keep_indices = numpy.where(detection[index] >= face_detector_score)[0]
166
+
167
+ if numpy.any(keep_indices):
168
+ stride_height = face_detector_height // feature_stride
169
+ stride_width = face_detector_width // feature_stride
170
+ anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width)
171
+ bounding_boxes_raw = detection[index + feature_map_channel] * feature_stride
172
+ face_landmarks_5_raw = detection[index + feature_map_channel * 2] * feature_stride
173
+
174
+ for bounding_box_raw in distance_to_bounding_box(anchors, bounding_boxes_raw)[keep_indices]:
175
+ bounding_boxes.append(numpy.array(
176
+ [
177
+ bounding_box_raw[0] * ratio_width,
178
+ bounding_box_raw[1] * ratio_height,
179
+ bounding_box_raw[2] * ratio_width,
180
+ bounding_box_raw[3] * ratio_height
181
+ ]))
182
+
183
+ for face_score_raw in detection[index][keep_indices]:
184
+ face_scores.append(face_score_raw[0])
185
+
186
+ for face_landmark_raw_5 in distance_to_face_landmark_5(anchors, face_landmarks_5_raw)[keep_indices]:
187
+ face_landmarks_5.append(face_landmark_raw_5 * [ ratio_width, ratio_height ])
188
+
189
+ return bounding_boxes, face_scores, face_landmarks_5
190
+
191
+
192
+ def detect_with_scrfd(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
193
+ bounding_boxes = []
194
+ face_scores = []
195
+ face_landmarks_5 = []
196
+ feature_strides = [ 8, 16, 32 ]
197
+ feature_map_channel = 3
198
+ anchor_total = 2
199
+ face_detector_score = state_manager.get_item('face_detector_score')
200
+ face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
201
+ temp_vision_frame = restrict_frame(vision_frame, (face_detector_width, face_detector_height))
202
+ ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
203
+ ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
204
+ detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
205
+ detect_vision_frame = normalize_detect_frame(detect_vision_frame, [ -1, 1 ])
206
+ detection = forward_with_scrfd(detect_vision_frame)
207
+
208
+ for index, feature_stride in enumerate(feature_strides):
209
+ keep_indices = numpy.where(detection[index] >= face_detector_score)[0]
210
+
211
+ if numpy.any(keep_indices):
212
+ stride_height = face_detector_height // feature_stride
213
+ stride_width = face_detector_width // feature_stride
214
+ anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width)
215
+ bounding_boxes_raw = detection[index + feature_map_channel] * feature_stride
216
+ face_landmarks_5_raw = detection[index + feature_map_channel * 2] * feature_stride
217
+
218
+ for bounding_box_raw in distance_to_bounding_box(anchors, bounding_boxes_raw)[keep_indices]:
219
+ bounding_boxes.append(numpy.array(
220
+ [
221
+ bounding_box_raw[0] * ratio_width,
222
+ bounding_box_raw[1] * ratio_height,
223
+ bounding_box_raw[2] * ratio_width,
224
+ bounding_box_raw[3] * ratio_height
225
+ ]))
226
+
227
+ for face_score_raw in detection[index][keep_indices]:
228
+ face_scores.append(face_score_raw[0])
229
+
230
+ for face_landmark_raw_5 in distance_to_face_landmark_5(anchors, face_landmarks_5_raw)[keep_indices]:
231
+ face_landmarks_5.append(face_landmark_raw_5 * [ ratio_width, ratio_height ])
232
+
233
+ return bounding_boxes, face_scores, face_landmarks_5
234
+
235
+
236
+ def detect_with_yolo_face(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
237
+ bounding_boxes = []
238
+ face_scores = []
239
+ face_landmarks_5 = []
240
+ face_detector_score = state_manager.get_item('face_detector_score')
241
+ face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
242
+ temp_vision_frame = restrict_frame(vision_frame, (face_detector_width, face_detector_height))
243
+ ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0]
244
+ ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1]
245
+ detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size)
246
+ detect_vision_frame = normalize_detect_frame(detect_vision_frame, [ 0, 1 ])
247
+ detection = forward_with_yolo_face(detect_vision_frame)
248
+ detection = numpy.squeeze(detection).T
249
+ bounding_boxes_raw, face_scores_raw, face_landmarks_5_raw = numpy.split(detection, [ 4, 5 ], axis = 1)
250
+ keep_indices = numpy.where(face_scores_raw > face_detector_score)[0]
251
+
252
+ if numpy.any(keep_indices):
253
+ bounding_boxes_raw, face_scores_raw, face_landmarks_5_raw = bounding_boxes_raw[keep_indices], face_scores_raw[keep_indices], face_landmarks_5_raw[keep_indices]
254
+
255
+ for bounding_box_raw in bounding_boxes_raw:
256
+ bounding_boxes.append(numpy.array(
257
+ [
258
+ (bounding_box_raw[0] - bounding_box_raw[2] / 2) * ratio_width,
259
+ (bounding_box_raw[1] - bounding_box_raw[3] / 2) * ratio_height,
260
+ (bounding_box_raw[0] + bounding_box_raw[2] / 2) * ratio_width,
261
+ (bounding_box_raw[1] + bounding_box_raw[3] / 2) * ratio_height
262
+ ]))
263
+
264
+ face_scores = face_scores_raw.ravel().tolist()
265
+ face_landmarks_5_raw[:, 0::3] = (face_landmarks_5_raw[:, 0::3]) * ratio_width
266
+ face_landmarks_5_raw[:, 1::3] = (face_landmarks_5_raw[:, 1::3]) * ratio_height
267
+
268
+ for face_landmark_raw_5 in face_landmarks_5_raw:
269
+ face_landmarks_5.append(numpy.array(face_landmark_raw_5.reshape(-1, 3)[:, :2]))
270
+
271
+ return bounding_boxes, face_scores, face_landmarks_5
272
+
273
+
274
+ def forward_with_retinaface(detect_vision_frame : VisionFrame) -> Detection:
275
+ face_detector = get_inference_pool().get('retinaface')
276
+
277
+ with thread_semaphore():
278
+ detection = face_detector.run(None,
279
+ {
280
+ 'input': detect_vision_frame
281
+ })
282
+
283
+ return detection
284
+
285
+
286
+ def forward_with_scrfd(detect_vision_frame : VisionFrame) -> Detection:
287
+ face_detector = get_inference_pool().get('scrfd')
288
+
289
+ with thread_semaphore():
290
+ detection = face_detector.run(None,
291
+ {
292
+ 'input': detect_vision_frame
293
+ })
294
+
295
+ return detection
296
+
297
+
298
+ def forward_with_yolo_face(detect_vision_frame : VisionFrame) -> Detection:
299
+ face_detector = get_inference_pool().get('yolo_face')
300
+
301
+ with thread_semaphore():
302
+ detection = face_detector.run(None,
303
+ {
304
+ 'input': detect_vision_frame
305
+ })
306
+
307
+ return detection
308
+
309
+
310
+ def prepare_detect_frame(temp_vision_frame : VisionFrame, face_detector_size : str) -> VisionFrame:
311
+ face_detector_width, face_detector_height = unpack_resolution(face_detector_size)
312
+ detect_vision_frame = numpy.zeros((face_detector_height, face_detector_width, 3))
313
+ detect_vision_frame[:temp_vision_frame.shape[0], :temp_vision_frame.shape[1], :] = temp_vision_frame
314
+ detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
315
+ return detect_vision_frame
316
+
317
+
318
+ def normalize_detect_frame(detect_vision_frame : VisionFrame, normalize_range : Sequence[int]) -> VisionFrame:
319
+ if normalize_range == [ -1, 1 ]:
320
+ return (detect_vision_frame - 127.5) / 128.0
321
+ if normalize_range == [ 0, 1 ]:
322
+ return detect_vision_frame / 255.0
323
+ return detect_vision_frame
facefusion/face_helper.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+ from typing import List, Sequence, Tuple
3
+
4
+ import cv2
5
+ import numpy
6
+ from cv2.typing import Size
7
+
8
+ from facefusion.types import Anchors, Angle, BoundingBox, Distance, FaceDetectorModel, FaceLandmark5, FaceLandmark68, Mask, Matrix, Points, Scale, Score, Translation, VisionFrame, WarpTemplate, WarpTemplateSet
9
+
10
+ WARP_TEMPLATE_SET : WarpTemplateSet =\
11
+ {
12
+ 'arcface_112_v1': numpy.array(
13
+ [
14
+ [ 0.35473214, 0.45658929 ],
15
+ [ 0.64526786, 0.45658929 ],
16
+ [ 0.50000000, 0.61154464 ],
17
+ [ 0.37913393, 0.77687500 ],
18
+ [ 0.62086607, 0.77687500 ]
19
+ ]),
20
+ 'arcface_112_v2': numpy.array(
21
+ [
22
+ [ 0.34191607, 0.46157411 ],
23
+ [ 0.65653393, 0.45983393 ],
24
+ [ 0.50022500, 0.64050536 ],
25
+ [ 0.37097589, 0.82469196 ],
26
+ [ 0.63151696, 0.82325089 ]
27
+ ]),
28
+ 'arcface_128': numpy.array(
29
+ [
30
+ [ 0.36167656, 0.40387734 ],
31
+ [ 0.63696719, 0.40235469 ],
32
+ [ 0.50019687, 0.56044219 ],
33
+ [ 0.38710391, 0.72160547 ],
34
+ [ 0.61507734, 0.72034453 ]
35
+ ]),
36
+ 'dfl_whole_face': numpy.array(
37
+ [
38
+ [ 0.35342266, 0.39285716 ],
39
+ [ 0.62797622, 0.39285716 ],
40
+ [ 0.48660713, 0.54017860 ],
41
+ [ 0.38839287, 0.68750011 ],
42
+ [ 0.59821427, 0.68750011 ]
43
+ ]),
44
+ 'ffhq_512': numpy.array(
45
+ [
46
+ [ 0.37691676, 0.46864664 ],
47
+ [ 0.62285697, 0.46912813 ],
48
+ [ 0.50123859, 0.61331904 ],
49
+ [ 0.39308822, 0.72541100 ],
50
+ [ 0.61150205, 0.72490465 ]
51
+ ]),
52
+ 'mtcnn_512': numpy.array(
53
+ [
54
+ [ 0.36562865, 0.46733799 ],
55
+ [ 0.63305391, 0.46585885 ],
56
+ [ 0.50019127, 0.61942959 ],
57
+ [ 0.39032951, 0.77598822 ],
58
+ [ 0.61178945, 0.77476328 ]
59
+ ]),
60
+ 'styleganex_384': numpy.array(
61
+ [
62
+ [ 0.42353745, 0.52289879 ],
63
+ [ 0.57725008, 0.52319972 ],
64
+ [ 0.50123859, 0.61331904 ],
65
+ [ 0.43364461, 0.68337652 ],
66
+ [ 0.57015325, 0.68306005 ]
67
+ ])
68
+ }
69
+
70
+
71
+ def estimate_matrix_by_face_landmark_5(face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Matrix:
72
+ normed_warp_template = WARP_TEMPLATE_SET.get(warp_template) * crop_size
73
+ affine_matrix = cv2.estimateAffinePartial2D(face_landmark_5, normed_warp_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0]
74
+ return affine_matrix
75
+
76
+
77
+ def warp_face_by_face_landmark_5(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
78
+ affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, warp_template, crop_size)
79
+ crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA)
80
+ return crop_vision_frame, affine_matrix
81
+
82
+
83
+ def warp_face_by_bounding_box(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
84
+ source_points = numpy.array([ [ bounding_box[0], bounding_box[1] ], [bounding_box[2], bounding_box[1] ], [ bounding_box[0], bounding_box[3] ] ]).astype(numpy.float32)
85
+ target_points = numpy.array([ [ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ] ]).astype(numpy.float32)
86
+ affine_matrix = cv2.getAffineTransform(source_points, target_points)
87
+ if bounding_box[2] - bounding_box[0] > crop_size[0] or bounding_box[3] - bounding_box[1] > crop_size[1]:
88
+ interpolation_method = cv2.INTER_AREA
89
+ else:
90
+ interpolation_method = cv2.INTER_LINEAR
91
+ crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, flags = interpolation_method)
92
+ return crop_vision_frame, affine_matrix
93
+
94
+
95
+ def warp_face_by_translation(temp_vision_frame : VisionFrame, translation : Translation, scale : float, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
96
+ affine_matrix = numpy.array([ [ scale, 0, translation[0] ], [ 0, scale, translation[1] ] ])
97
+ crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size)
98
+ return crop_vision_frame, affine_matrix
99
+
100
+
101
+ def paste_back(temp_vision_frame : VisionFrame, crop_vision_frame : VisionFrame, crop_mask : Mask, affine_matrix : Matrix) -> VisionFrame:
102
+ paste_bounding_box, paste_matrix = calc_paste_area(temp_vision_frame, crop_vision_frame, affine_matrix)
103
+ x_min, y_min, x_max, y_max = paste_bounding_box
104
+ paste_width = x_max - x_min
105
+ paste_height = y_max - y_min
106
+ inverse_mask = cv2.warpAffine(crop_mask, paste_matrix, (paste_width, paste_height)).clip(0, 1)
107
+ inverse_mask = numpy.expand_dims(inverse_mask, axis = -1)
108
+ inverse_vision_frame = cv2.warpAffine(crop_vision_frame, paste_matrix, (paste_width, paste_height), borderMode = cv2.BORDER_REPLICATE)
109
+ temp_vision_frame = temp_vision_frame.copy()
110
+ paste_vision_frame = temp_vision_frame[y_min:y_max, x_min:x_max]
111
+ paste_vision_frame = paste_vision_frame * (1 - inverse_mask) + inverse_vision_frame * inverse_mask
112
+ temp_vision_frame[y_min:y_max, x_min:x_max] = paste_vision_frame.astype(temp_vision_frame.dtype)
113
+ return temp_vision_frame
114
+
115
+
116
+ def calc_paste_area(temp_vision_frame : VisionFrame, crop_vision_frame : VisionFrame, affine_matrix : Matrix) -> Tuple[BoundingBox, Matrix]:
117
+ temp_height, temp_width = temp_vision_frame.shape[:2]
118
+ crop_height, crop_width = crop_vision_frame.shape[:2]
119
+ inverse_matrix = cv2.invertAffineTransform(affine_matrix)
120
+ crop_points = numpy.array([ [ 0, 0 ], [ crop_width, 0 ], [ crop_width, crop_height ], [ 0, crop_height ] ])
121
+ paste_region_points = transform_points(crop_points, inverse_matrix)
122
+ min_point = numpy.floor(paste_region_points.min(axis = 0)).astype(int)
123
+ max_point = numpy.ceil(paste_region_points.max(axis = 0)).astype(int)
124
+ x_min, y_min = numpy.clip(min_point, 0, [ temp_width, temp_height ])
125
+ x_max, y_max = numpy.clip(max_point, 0, [ temp_width, temp_height ])
126
+ paste_bounding_box = numpy.array([ x_min, y_min, x_max, y_max ])
127
+ paste_matrix = inverse_matrix.copy()
128
+ paste_matrix[0, 2] -= x_min
129
+ paste_matrix[1, 2] -= y_min
130
+ return paste_bounding_box, paste_matrix
131
+
132
+
133
+ @lru_cache(maxsize = None)
134
+ def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> Anchors:
135
+ y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
136
+ anchors = numpy.stack((y, x), axis = -1)
137
+ anchors = (anchors * feature_stride).reshape((-1, 2))
138
+ anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
139
+ return anchors
140
+
141
+
142
+ def create_rotated_matrix_and_size(angle : Angle, size : Size) -> Tuple[Matrix, Size]:
143
+ rotated_matrix = cv2.getRotationMatrix2D((size[0] / 2, size[1] / 2), angle, 1)
144
+ rotated_size = numpy.dot(numpy.abs(rotated_matrix[:, :2]), size)
145
+ rotated_matrix[:, -1] += (rotated_size - size) * 0.5 #type:ignore[misc]
146
+ rotated_size = int(rotated_size[0]), int(rotated_size[1])
147
+ return rotated_matrix, rotated_size
148
+
149
+
150
+ def create_bounding_box(face_landmark_68 : FaceLandmark68) -> BoundingBox:
151
+ min_x, min_y = numpy.min(face_landmark_68, axis = 0)
152
+ max_x, max_y = numpy.max(face_landmark_68, axis = 0)
153
+ bounding_box = normalize_bounding_box(numpy.array([ min_x, min_y, max_x, max_y ]))
154
+ return bounding_box
155
+
156
+
157
+ def normalize_bounding_box(bounding_box : BoundingBox) -> BoundingBox:
158
+ x1, y1, x2, y2 = bounding_box
159
+ x1, x2 = sorted([ x1, x2 ])
160
+ y1, y2 = sorted([ y1, y2 ])
161
+ return numpy.array([ x1, y1, x2, y2 ])
162
+
163
+
164
+ def transform_points(points : Points, matrix : Matrix) -> Points:
165
+ points = points.reshape(-1, 1, 2)
166
+ points = cv2.transform(points, matrix) #type:ignore[assignment]
167
+ points = points.reshape(-1, 2)
168
+ return points
169
+
170
+
171
+ def transform_bounding_box(bounding_box : BoundingBox, matrix : Matrix) -> BoundingBox:
172
+ points = numpy.array(
173
+ [
174
+ [ bounding_box[0], bounding_box[1] ],
175
+ [ bounding_box[2], bounding_box[1] ],
176
+ [ bounding_box[2], bounding_box[3] ],
177
+ [ bounding_box[0], bounding_box[3] ]
178
+ ])
179
+ points = transform_points(points, matrix)
180
+ x1, y1 = numpy.min(points, axis = 0)
181
+ x2, y2 = numpy.max(points, axis = 0)
182
+ return normalize_bounding_box(numpy.array([ x1, y1, x2, y2 ]))
183
+
184
+
185
+ def distance_to_bounding_box(points : Points, distance : Distance) -> BoundingBox:
186
+ x1 = points[:, 0] - distance[:, 0]
187
+ y1 = points[:, 1] - distance[:, 1]
188
+ x2 = points[:, 0] + distance[:, 2]
189
+ y2 = points[:, 1] + distance[:, 3]
190
+ bounding_box = numpy.column_stack([ x1, y1, x2, y2 ])
191
+ return bounding_box
192
+
193
+
194
+ def distance_to_face_landmark_5(points : Points, distance : Distance) -> FaceLandmark5:
195
+ x = points[:, 0::2] + distance[:, 0::2]
196
+ y = points[:, 1::2] + distance[:, 1::2]
197
+ face_landmark_5 = numpy.stack((x, y), axis = -1)
198
+ return face_landmark_5
199
+
200
+
201
+ def scale_face_landmark_5(face_landmark_5 : FaceLandmark5, scale : Scale) -> FaceLandmark5:
202
+ face_landmark_5_scale = face_landmark_5 - face_landmark_5[2]
203
+ face_landmark_5_scale *= scale
204
+ face_landmark_5_scale += face_landmark_5[2]
205
+ return face_landmark_5_scale
206
+
207
+
208
+ def convert_to_face_landmark_5(face_landmark_68 : FaceLandmark68) -> FaceLandmark5:
209
+ face_landmark_5 = numpy.array(
210
+ [
211
+ numpy.mean(face_landmark_68[36:42], axis = 0),
212
+ numpy.mean(face_landmark_68[42:48], axis = 0),
213
+ face_landmark_68[30],
214
+ face_landmark_68[48],
215
+ face_landmark_68[54]
216
+ ])
217
+ return face_landmark_5
218
+
219
+
220
+ def estimate_face_angle(face_landmark_68 : FaceLandmark68) -> Angle:
221
+ x1, y1 = face_landmark_68[0]
222
+ x2, y2 = face_landmark_68[16]
223
+ theta = numpy.arctan2(y2 - y1, x2 - x1)
224
+ theta = numpy.degrees(theta) % 360
225
+ angles = numpy.linspace(0, 360, 5)
226
+ index = numpy.argmin(numpy.abs(angles - theta))
227
+ face_angle = int(angles[index] % 360)
228
+ return face_angle
229
+
230
+
231
+ def apply_nms(bounding_boxes : List[BoundingBox], scores : List[Score], score_threshold : float, nms_threshold : float) -> Sequence[int]:
232
+ normed_bounding_boxes = [ (x1, y1, x2 - x1, y2 - y1) for (x1, y1, x2, y2) in bounding_boxes ]
233
+ keep_indices = cv2.dnn.NMSBoxes(normed_bounding_boxes, scores, score_threshold = score_threshold, nms_threshold = nms_threshold)
234
+ return keep_indices
235
+
236
+
237
+ def get_nms_threshold(face_detector_model : FaceDetectorModel, face_detector_angles : List[Angle]) -> float:
238
+ if face_detector_model == 'many':
239
+ return 0.1
240
+ if len(face_detector_angles) == 2:
241
+ return 0.3
242
+ if len(face_detector_angles) == 3:
243
+ return 0.2
244
+ if len(face_detector_angles) == 4:
245
+ return 0.1
246
+ return 0.4
247
+
248
+
249
+ def merge_matrix(matrices : List[Matrix]) -> Matrix:
250
+ merged_matrix = numpy.vstack([ matrices[0], [ 0, 0, 1 ] ])
251
+ for matrix in matrices[1:]:
252
+ matrix = numpy.vstack([ matrix, [ 0, 0, 1 ] ])
253
+ merged_matrix = numpy.dot(merged_matrix, matrix)
254
+ return merged_matrix[:2, :]
facefusion/face_landmarker.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+ from typing import Tuple
3
+
4
+ import cv2
5
+ import numpy
6
+
7
+ from facefusion import inference_manager, state_manager
8
+ from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
9
+ from facefusion.face_helper import create_rotated_matrix_and_size, estimate_matrix_by_face_landmark_5, transform_points, warp_face_by_translation
10
+ from facefusion.filesystem import resolve_relative_path
11
+ from facefusion.thread_helper import conditional_thread_semaphore
12
+ from facefusion.types import Angle, BoundingBox, DownloadScope, DownloadSet, FaceLandmark5, FaceLandmark68, InferencePool, ModelSet, Prediction, Score, VisionFrame
13
+
14
+
15
+ @lru_cache(maxsize = None)
16
+ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
17
+ return\
18
+ {
19
+ '2dfan4':
20
+ {
21
+ 'hashes':
22
+ {
23
+ '2dfan4':
24
+ {
25
+ 'url': resolve_download_url('models-3.0.0', '2dfan4.hash'),
26
+ 'path': resolve_relative_path('../.assets/models/2dfan4.hash')
27
+ }
28
+ },
29
+ 'sources':
30
+ {
31
+ '2dfan4':
32
+ {
33
+ 'url': resolve_download_url('models-3.0.0', '2dfan4.onnx'),
34
+ 'path': resolve_relative_path('../.assets/models/2dfan4.onnx')
35
+ }
36
+ },
37
+ 'size': (256, 256)
38
+ },
39
+ 'peppa_wutz':
40
+ {
41
+ 'hashes':
42
+ {
43
+ 'peppa_wutz':
44
+ {
45
+ 'url': resolve_download_url('models-3.0.0', 'peppa_wutz.hash'),
46
+ 'path': resolve_relative_path('../.assets/models/peppa_wutz.hash')
47
+ }
48
+ },
49
+ 'sources':
50
+ {
51
+ 'peppa_wutz':
52
+ {
53
+ 'url': resolve_download_url('models-3.0.0', 'peppa_wutz.onnx'),
54
+ 'path': resolve_relative_path('../.assets/models/peppa_wutz.onnx')
55
+ }
56
+ },
57
+ 'size': (256, 256)
58
+ },
59
+ 'fan_68_5':
60
+ {
61
+ 'hashes':
62
+ {
63
+ 'fan_68_5':
64
+ {
65
+ 'url': resolve_download_url('models-3.0.0', 'fan_68_5.hash'),
66
+ 'path': resolve_relative_path('../.assets/models/fan_68_5.hash')
67
+ }
68
+ },
69
+ 'sources':
70
+ {
71
+ 'fan_68_5':
72
+ {
73
+ 'url': resolve_download_url('models-3.0.0', 'fan_68_5.onnx'),
74
+ 'path': resolve_relative_path('../.assets/models/fan_68_5.onnx')
75
+ }
76
+ }
77
+ }
78
+ }
79
+
80
+
81
+ def get_inference_pool() -> InferencePool:
82
+ model_names = [ state_manager.get_item('face_landmarker_model'), 'fan_68_5' ]
83
+ _, model_source_set = collect_model_downloads()
84
+
85
+ return inference_manager.get_inference_pool(__name__, model_names, model_source_set)
86
+
87
+
88
+ def clear_inference_pool() -> None:
89
+ model_names = [ state_manager.get_item('face_landmarker_model'), 'fan_68_5' ]
90
+ inference_manager.clear_inference_pool(__name__, model_names)
91
+
92
+
93
+ def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
94
+ model_set = create_static_model_set('full')
95
+ model_hash_set =\
96
+ {
97
+ 'fan_68_5': model_set.get('fan_68_5').get('hashes').get('fan_68_5')
98
+ }
99
+ model_source_set =\
100
+ {
101
+ 'fan_68_5': model_set.get('fan_68_5').get('sources').get('fan_68_5')
102
+ }
103
+
104
+ for face_landmarker_model in [ '2dfan4', 'peppa_wutz' ]:
105
+ if state_manager.get_item('face_landmarker_model') in [ 'many', face_landmarker_model ]:
106
+ model_hash_set[face_landmarker_model] = model_set.get(face_landmarker_model).get('hashes').get(face_landmarker_model)
107
+ model_source_set[face_landmarker_model] = model_set.get(face_landmarker_model).get('sources').get(face_landmarker_model)
108
+
109
+ return model_hash_set, model_source_set
110
+
111
+
112
+ def pre_check() -> bool:
113
+ model_hash_set, model_source_set = collect_model_downloads()
114
+
115
+ return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set)
116
+
117
+
118
+ def detect_face_landmark(vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]:
119
+ face_landmark_2dfan4 = None
120
+ face_landmark_peppa_wutz = None
121
+ face_landmark_score_2dfan4 = 0.0
122
+ face_landmark_score_peppa_wutz = 0.0
123
+
124
+ if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]:
125
+ face_landmark_2dfan4, face_landmark_score_2dfan4 = detect_with_2dfan4(vision_frame, bounding_box, face_angle)
126
+
127
+ if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]:
128
+ face_landmark_peppa_wutz, face_landmark_score_peppa_wutz = detect_with_peppa_wutz(vision_frame, bounding_box, face_angle)
129
+
130
+ if face_landmark_score_2dfan4 > face_landmark_score_peppa_wutz - 0.2:
131
+ return face_landmark_2dfan4, face_landmark_score_2dfan4
132
+ return face_landmark_peppa_wutz, face_landmark_score_peppa_wutz
133
+
134
+
135
+ def detect_with_2dfan4(temp_vision_frame: VisionFrame, bounding_box: BoundingBox, face_angle: Angle) -> Tuple[FaceLandmark68, Score]:
136
+ model_size = create_static_model_set('full').get('2dfan4').get('size')
137
+ scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None)
138
+ translation = (model_size[0] - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5
139
+ rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, model_size)
140
+ crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, model_size)
141
+ crop_vision_frame = cv2.warpAffine(crop_vision_frame, rotated_matrix, rotated_size)
142
+ crop_vision_frame = conditional_optimize_contrast(crop_vision_frame)
143
+ crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0
144
+ face_landmark_68, face_heatmap = forward_with_2dfan4(crop_vision_frame)
145
+ face_landmark_68 = face_landmark_68[:, :, :2][0] / 64 * 256
146
+ face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(rotated_matrix))
147
+ face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(affine_matrix))
148
+ face_landmark_score_68 = numpy.amax(face_heatmap, axis = (2, 3))
149
+ face_landmark_score_68 = numpy.mean(face_landmark_score_68)
150
+ face_landmark_score_68 = numpy.interp(face_landmark_score_68, [ 0, 0.9 ], [ 0, 1 ])
151
+ return face_landmark_68, face_landmark_score_68
152
+
153
+
154
+ def detect_with_peppa_wutz(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]:
155
+ model_size = create_static_model_set('full').get('peppa_wutz').get('size')
156
+ scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None)
157
+ translation = (model_size[0] - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5
158
+ rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, model_size)
159
+ crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, model_size)
160
+ crop_vision_frame = cv2.warpAffine(crop_vision_frame, rotated_matrix, rotated_size)
161
+ crop_vision_frame = conditional_optimize_contrast(crop_vision_frame)
162
+ crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0
163
+ crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
164
+ prediction = forward_with_peppa_wutz(crop_vision_frame)
165
+ face_landmark_68 = prediction.reshape(-1, 3)[:, :2] / 64 * model_size[0]
166
+ face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(rotated_matrix))
167
+ face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(affine_matrix))
168
+ face_landmark_score_68 = prediction.reshape(-1, 3)[:, 2].mean()
169
+ face_landmark_score_68 = numpy.interp(face_landmark_score_68, [ 0, 0.95 ], [ 0, 1 ])
170
+ return face_landmark_68, face_landmark_score_68
171
+
172
+
173
+ def conditional_optimize_contrast(crop_vision_frame : VisionFrame) -> VisionFrame:
174
+ crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_RGB2Lab)
175
+ if numpy.mean(crop_vision_frame[:, :, 0]) < 30: #type:ignore[arg-type]
176
+ crop_vision_frame[:, :, 0] = cv2.createCLAHE(clipLimit = 2).apply(crop_vision_frame[:, :, 0])
177
+ crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_Lab2RGB)
178
+ return crop_vision_frame
179
+
180
+
181
+ def estimate_face_landmark_68_5(face_landmark_5 : FaceLandmark5) -> FaceLandmark68:
182
+ affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, 'ffhq_512', (1, 1))
183
+ face_landmark_5 = cv2.transform(face_landmark_5.reshape(1, -1, 2), affine_matrix).reshape(-1, 2)
184
+ face_landmark_68_5 = forward_fan_68_5(face_landmark_5)
185
+ face_landmark_68_5 = cv2.transform(face_landmark_68_5.reshape(1, -1, 2), cv2.invertAffineTransform(affine_matrix)).reshape(-1, 2)
186
+ return face_landmark_68_5
187
+
188
+
189
+ def forward_with_2dfan4(crop_vision_frame : VisionFrame) -> Tuple[Prediction, Prediction]:
190
+ face_landmarker = get_inference_pool().get('2dfan4')
191
+
192
+ with conditional_thread_semaphore():
193
+ prediction = face_landmarker.run(None,
194
+ {
195
+ 'input': [ crop_vision_frame ]
196
+ })
197
+
198
+ return prediction
199
+
200
+
201
+ def forward_with_peppa_wutz(crop_vision_frame : VisionFrame) -> Prediction:
202
+ face_landmarker = get_inference_pool().get('peppa_wutz')
203
+
204
+ with conditional_thread_semaphore():
205
+ prediction = face_landmarker.run(None,
206
+ {
207
+ 'input': crop_vision_frame
208
+ })[0]
209
+
210
+ return prediction
211
+
212
+
213
+ def forward_fan_68_5(face_landmark_5 : FaceLandmark5) -> FaceLandmark68:
214
+ face_landmarker = get_inference_pool().get('fan_68_5')
215
+
216
+ with conditional_thread_semaphore():
217
+ face_landmark_68_5 = face_landmarker.run(None,
218
+ {
219
+ 'input': [ face_landmark_5 ]
220
+ })[0][0]
221
+
222
+ return face_landmark_68_5
facefusion/face_masker.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+ from typing import List, Tuple
3
+
4
+ import cv2
5
+ import numpy
6
+
7
+ import facefusion.choices
8
+ from facefusion import inference_manager, state_manager
9
+ from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
10
+ from facefusion.filesystem import resolve_relative_path
11
+ from facefusion.thread_helper import conditional_thread_semaphore
12
+ from facefusion.types import DownloadScope, DownloadSet, FaceLandmark68, FaceMaskArea, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame
13
+
14
+
15
+ @lru_cache(maxsize = None)
16
+ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
17
+ return\
18
+ {
19
+ 'xseg_1':
20
+ {
21
+ 'hashes':
22
+ {
23
+ 'face_occluder':
24
+ {
25
+ 'url': resolve_download_url('models-3.1.0', 'xseg_1.hash'),
26
+ 'path': resolve_relative_path('../.assets/models/xseg_1.hash')
27
+ }
28
+ },
29
+ 'sources':
30
+ {
31
+ 'face_occluder':
32
+ {
33
+ 'url': resolve_download_url('models-3.1.0', 'xseg_1.onnx'),
34
+ 'path': resolve_relative_path('../.assets/models/xseg_1.onnx')
35
+ }
36
+ },
37
+ 'size': (256, 256)
38
+ },
39
+ 'xseg_2':
40
+ {
41
+ 'hashes':
42
+ {
43
+ 'face_occluder':
44
+ {
45
+ 'url': resolve_download_url('models-3.1.0', 'xseg_2.hash'),
46
+ 'path': resolve_relative_path('../.assets/models/xseg_2.hash')
47
+ }
48
+ },
49
+ 'sources':
50
+ {
51
+ 'face_occluder':
52
+ {
53
+ 'url': resolve_download_url('models-3.1.0', 'xseg_2.onnx'),
54
+ 'path': resolve_relative_path('../.assets/models/xseg_2.onnx')
55
+ }
56
+ },
57
+ 'size': (256, 256)
58
+ },
59
+ 'xseg_3':
60
+ {
61
+ 'hashes':
62
+ {
63
+ 'face_occluder':
64
+ {
65
+ 'url': resolve_download_url('models-3.2.0', 'xseg_3.hash'),
66
+ 'path': resolve_relative_path('../.assets/models/xseg_3.hash')
67
+ }
68
+ },
69
+ 'sources':
70
+ {
71
+ 'face_occluder':
72
+ {
73
+ 'url': resolve_download_url('models-3.2.0', 'xseg_3.onnx'),
74
+ 'path': resolve_relative_path('../.assets/models/xseg_3.onnx')
75
+ }
76
+ },
77
+ 'size': (256, 256)
78
+ },
79
+ 'bisenet_resnet_18':
80
+ {
81
+ 'hashes':
82
+ {
83
+ 'face_parser':
84
+ {
85
+ 'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.hash'),
86
+ 'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.hash')
87
+ }
88
+ },
89
+ 'sources':
90
+ {
91
+ 'face_parser':
92
+ {
93
+ 'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.onnx'),
94
+ 'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.onnx')
95
+ }
96
+ },
97
+ 'size': (512, 512)
98
+ },
99
+ 'bisenet_resnet_34':
100
+ {
101
+ 'hashes':
102
+ {
103
+ 'face_parser':
104
+ {
105
+ 'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.hash'),
106
+ 'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.hash')
107
+ }
108
+ },
109
+ 'sources':
110
+ {
111
+ 'face_parser':
112
+ {
113
+ 'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.onnx'),
114
+ 'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.onnx')
115
+ }
116
+ },
117
+ 'size': (512, 512)
118
+ }
119
+ }
120
+
121
+
122
+ def get_inference_pool() -> InferencePool:
123
+ model_names = [ state_manager.get_item('face_occluder_model'), state_manager.get_item('face_parser_model') ]
124
+ _, model_source_set = collect_model_downloads()
125
+
126
+ return inference_manager.get_inference_pool(__name__, model_names, model_source_set)
127
+
128
+
129
+ def clear_inference_pool() -> None:
130
+ model_names = [ state_manager.get_item('face_occluder_model'), state_manager.get_item('face_parser_model') ]
131
+ inference_manager.clear_inference_pool(__name__, model_names)
132
+
133
+
134
+ def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
135
+ model_set = create_static_model_set('full')
136
+ model_hash_set = {}
137
+ model_source_set = {}
138
+
139
+ for face_occluder_model in [ 'xseg_1', 'xseg_2', 'xseg_3' ]:
140
+ if state_manager.get_item('face_occluder_model') == face_occluder_model:
141
+ model_hash_set[face_occluder_model] = model_set.get(face_occluder_model).get('hashes').get('face_occluder')
142
+ model_source_set[face_occluder_model] = model_set.get(face_occluder_model).get('sources').get('face_occluder')
143
+
144
+ for face_parser_model in [ 'bisenet_resnet_18', 'bisenet_resnet_34' ]:
145
+ if state_manager.get_item('face_parser_model') == face_parser_model:
146
+ model_hash_set[face_parser_model] = model_set.get(face_parser_model).get('hashes').get('face_parser')
147
+ model_source_set[face_parser_model] = model_set.get(face_parser_model).get('sources').get('face_parser')
148
+
149
+ return model_hash_set, model_source_set
150
+
151
+
152
+ def pre_check() -> bool:
153
+ model_hash_set, model_source_set = collect_model_downloads()
154
+
155
+ return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set)
156
+
157
+
158
+ def create_box_mask(crop_vision_frame : VisionFrame, face_mask_blur : float, face_mask_padding : Padding) -> Mask:
159
+ crop_size = crop_vision_frame.shape[:2][::-1]
160
+ blur_amount = int(crop_size[0] * 0.5 * face_mask_blur)
161
+ blur_area = max(blur_amount // 2, 1)
162
+ box_mask : Mask = numpy.ones(crop_size).astype(numpy.float32)
163
+ box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0
164
+ box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0
165
+ box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0
166
+ box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0
167
+
168
+ if blur_amount > 0:
169
+ box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25)
170
+ return box_mask
171
+
172
+
173
+ def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
174
+ model_name = state_manager.get_item('face_occluder_model')
175
+ model_size = create_static_model_set('full').get(model_name).get('size')
176
+ prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
177
+ prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255.0
178
+ prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
179
+ occlusion_mask = forward_occlude_face(prepare_vision_frame)
180
+ occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32)
181
+ occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1])
182
+ occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
183
+ return occlusion_mask
184
+
185
+
186
+ def create_area_mask(crop_vision_frame : VisionFrame, face_landmark_68 : FaceLandmark68, face_mask_areas : List[FaceMaskArea]) -> Mask:
187
+ crop_size = crop_vision_frame.shape[:2][::-1]
188
+ landmark_points = []
189
+
190
+ for face_mask_area in face_mask_areas:
191
+ if face_mask_area in facefusion.choices.face_mask_area_set:
192
+ landmark_points.extend(facefusion.choices.face_mask_area_set.get(face_mask_area))
193
+
194
+ convex_hull = cv2.convexHull(face_landmark_68[landmark_points].astype(numpy.int32))
195
+ area_mask = numpy.zeros(crop_size).astype(numpy.float32)
196
+ cv2.fillConvexPoly(area_mask, convex_hull, 1.0) # type: ignore[call-overload]
197
+ area_mask = (cv2.GaussianBlur(area_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
198
+ return area_mask
199
+
200
+
201
+ def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
202
+ model_name = state_manager.get_item('face_parser_model')
203
+ model_size = create_static_model_set('full').get(model_name).get('size')
204
+ prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
205
+ prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255.0
206
+ prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32))
207
+ prepare_vision_frame = numpy.divide(prepare_vision_frame, numpy.array([ 0.229, 0.224, 0.225 ]).astype(numpy.float32))
208
+ prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0)
209
+ prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2)
210
+ region_mask = forward_parse_face(prepare_vision_frame)
211
+ region_mask = numpy.isin(region_mask.argmax(0), [ facefusion.choices.face_mask_region_set.get(face_mask_region) for face_mask_region in face_mask_regions ])
212
+ region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1])
213
+ region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
214
+ return region_mask
215
+
216
+
217
+ def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask:
218
+ model_name = state_manager.get_item('face_occluder_model')
219
+ face_occluder = get_inference_pool().get(model_name)
220
+
221
+ with conditional_thread_semaphore():
222
+ occlusion_mask : Mask = face_occluder.run(None,
223
+ {
224
+ 'input': prepare_vision_frame
225
+ })[0][0]
226
+
227
+ return occlusion_mask
228
+
229
+
230
+ def forward_parse_face(prepare_vision_frame : VisionFrame) -> Mask:
231
+ model_name = state_manager.get_item('face_parser_model')
232
+ face_parser = get_inference_pool().get(model_name)
233
+
234
+ with conditional_thread_semaphore():
235
+ region_mask : Mask = face_parser.run(None,
236
+ {
237
+ 'input': prepare_vision_frame
238
+ })[0][0]
239
+
240
+ return region_mask
facefusion/face_recognizer.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+ from typing import Tuple
3
+
4
+ import numpy
5
+
6
+ from facefusion import inference_manager
7
+ from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
8
+ from facefusion.face_helper import warp_face_by_face_landmark_5
9
+ from facefusion.filesystem import resolve_relative_path
10
+ from facefusion.thread_helper import conditional_thread_semaphore
11
+ from facefusion.types import DownloadScope, Embedding, FaceLandmark5, InferencePool, ModelOptions, ModelSet, VisionFrame
12
+
13
+
14
+ @lru_cache(maxsize = None)
15
+ def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
16
+ return\
17
+ {
18
+ 'arcface':
19
+ {
20
+ 'hashes':
21
+ {
22
+ 'face_recognizer':
23
+ {
24
+ 'url': resolve_download_url('models-3.0.0', 'arcface_w600k_r50.hash'),
25
+ 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash')
26
+ }
27
+ },
28
+ 'sources':
29
+ {
30
+ 'face_recognizer':
31
+ {
32
+ 'url': resolve_download_url('models-3.0.0', 'arcface_w600k_r50.onnx'),
33
+ 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
34
+ }
35
+ },
36
+ 'template': 'arcface_112_v2',
37
+ 'size': (112, 112)
38
+ }
39
+ }
40
+
41
+
42
+ def get_inference_pool() -> InferencePool:
43
+ model_names = [ 'arcface' ]
44
+ model_source_set = get_model_options().get('sources')
45
+
46
+ return inference_manager.get_inference_pool(__name__, model_names, model_source_set)
47
+
48
+
49
+ def clear_inference_pool() -> None:
50
+ model_names = [ 'arcface' ]
51
+ inference_manager.clear_inference_pool(__name__, model_names)
52
+
53
+
54
+ def get_model_options() -> ModelOptions:
55
+ return create_static_model_set('full').get('arcface')
56
+
57
+
58
+ def pre_check() -> bool:
59
+ model_hash_set = get_model_options().get('hashes')
60
+ model_source_set = get_model_options().get('sources')
61
+
62
+ return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set)
63
+
64
+
65
+ def calc_embedding(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Embedding, Embedding]:
66
+ model_template = get_model_options().get('template')
67
+ model_size = get_model_options().get('size')
68
+ crop_vision_frame, matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_template, model_size)
69
+ crop_vision_frame = crop_vision_frame / 127.5 - 1
70
+ crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32)
71
+ crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
72
+ embedding = forward(crop_vision_frame)
73
+ embedding = embedding.ravel()
74
+ normed_embedding = embedding / numpy.linalg.norm(embedding)
75
+ return embedding, normed_embedding
76
+
77
+
78
+ def forward(crop_vision_frame : VisionFrame) -> Embedding:
79
+ face_recognizer = get_inference_pool().get('face_recognizer')
80
+
81
+ with conditional_thread_semaphore():
82
+ embedding = face_recognizer.run(None,
83
+ {
84
+ 'input': crop_vision_frame
85
+ })[0]
86
+
87
+ return embedding
facefusion/face_selector.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ import numpy
4
+
5
+ from facefusion import state_manager
6
+ from facefusion.types import Face, FaceSelectorOrder, FaceSet, Gender, Race, Score
7
+
8
+
9
+ def find_similar_faces(faces : List[Face], reference_faces : FaceSet, face_distance : float) -> List[Face]:
10
+ similar_faces : List[Face] = []
11
+
12
+ if faces and reference_faces:
13
+ for reference_set in reference_faces:
14
+ if not similar_faces:
15
+ for reference_face in reference_faces[reference_set]:
16
+ for face in faces:
17
+ if compare_faces(face, reference_face, face_distance):
18
+ similar_faces.append(face)
19
+ return similar_faces
20
+
21
+
22
+ def compare_faces(face : Face, reference_face : Face, face_distance : float) -> bool:
23
+ current_face_distance = calc_face_distance(face, reference_face)
24
+ current_face_distance = float(numpy.interp(current_face_distance, [ 0, 2 ], [ 0, 1 ]))
25
+ return current_face_distance < face_distance
26
+
27
+
28
+ def calc_face_distance(face : Face, reference_face : Face) -> float:
29
+ if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'):
30
+ return 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding)
31
+ return 0
32
+
33
+
34
+ def sort_and_filter_faces(faces : List[Face]) -> List[Face]:
35
+ if faces:
36
+ if state_manager.get_item('face_selector_order'):
37
+ faces = sort_faces_by_order(faces, state_manager.get_item('face_selector_order'))
38
+ if state_manager.get_item('face_selector_gender'):
39
+ faces = filter_faces_by_gender(faces, state_manager.get_item('face_selector_gender'))
40
+ if state_manager.get_item('face_selector_race'):
41
+ faces = filter_faces_by_race(faces, state_manager.get_item('face_selector_race'))
42
+ if state_manager.get_item('face_selector_age_start') or state_manager.get_item('face_selector_age_end'):
43
+ faces = filter_faces_by_age(faces, state_manager.get_item('face_selector_age_start'), state_manager.get_item('face_selector_age_end'))
44
+ return faces
45
+
46
+
47
+ def sort_faces_by_order(faces : List[Face], order : FaceSelectorOrder) -> List[Face]:
48
+ if order == 'left-right':
49
+ return sorted(faces, key = get_bounding_box_left)
50
+ if order == 'right-left':
51
+ return sorted(faces, key = get_bounding_box_left, reverse = True)
52
+ if order == 'top-bottom':
53
+ return sorted(faces, key = get_bounding_box_top)
54
+ if order == 'bottom-top':
55
+ return sorted(faces, key = get_bounding_box_top, reverse = True)
56
+ if order == 'small-large':
57
+ return sorted(faces, key = get_bounding_box_area)
58
+ if order == 'large-small':
59
+ return sorted(faces, key = get_bounding_box_area, reverse = True)
60
+ if order == 'best-worst':
61
+ return sorted(faces, key = get_face_detector_score, reverse = True)
62
+ if order == 'worst-best':
63
+ return sorted(faces, key = get_face_detector_score)
64
+ return faces
65
+
66
+
67
+ def get_bounding_box_left(face : Face) -> float:
68
+ return face.bounding_box[0]
69
+
70
+
71
+ def get_bounding_box_top(face : Face) -> float:
72
+ return face.bounding_box[1]
73
+
74
+
75
+ def get_bounding_box_area(face : Face) -> float:
76
+ return (face.bounding_box[2] - face.bounding_box[0]) * (face.bounding_box[3] - face.bounding_box[1])
77
+
78
+
79
+ def get_face_detector_score(face : Face) -> Score:
80
+ return face.score_set.get('detector')
81
+
82
+
83
+ def filter_faces_by_gender(faces : List[Face], gender : Gender) -> List[Face]:
84
+ filter_faces = []
85
+
86
+ for face in faces:
87
+ if face.gender == gender:
88
+ filter_faces.append(face)
89
+ return filter_faces
90
+
91
+
92
+ def filter_faces_by_age(faces : List[Face], face_selector_age_start : int, face_selector_age_end : int) -> List[Face]:
93
+ filter_faces = []
94
+ age = range(face_selector_age_start, face_selector_age_end)
95
+
96
+ for face in faces:
97
+ if set(face.age) & set(age):
98
+ filter_faces.append(face)
99
+ return filter_faces
100
+
101
+
102
+ def filter_faces_by_race(faces : List[Face], race : Race) -> List[Face]:
103
+ filter_faces = []
104
+
105
+ for face in faces:
106
+ if face.race == race:
107
+ filter_faces.append(face)
108
+ return filter_faces
facefusion/face_store.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
2
+
3
+ from facefusion.hash_helper import create_hash
4
+ from facefusion.types import Face, FaceSet, FaceStore, VisionFrame
5
+
6
+ FACE_STORE : FaceStore =\
7
+ {
8
+ 'static_faces': {},
9
+ 'reference_faces': {}
10
+ }
11
+
12
+
13
+ def get_face_store() -> FaceStore:
14
+ return FACE_STORE
15
+
16
+
17
+ def get_static_faces(vision_frame : VisionFrame) -> Optional[List[Face]]:
18
+ vision_hash = create_hash(vision_frame.tobytes())
19
+ return FACE_STORE.get('static_faces').get(vision_hash)
20
+
21
+
22
+ def set_static_faces(vision_frame : VisionFrame, faces : List[Face]) -> None:
23
+ vision_hash = create_hash(vision_frame.tobytes())
24
+ if vision_hash:
25
+ FACE_STORE['static_faces'][vision_hash] = faces
26
+
27
+
28
+ def clear_static_faces() -> None:
29
+ FACE_STORE['static_faces'].clear()
30
+
31
+
32
+ def get_reference_faces() -> Optional[FaceSet]:
33
+ return FACE_STORE.get('reference_faces')
34
+
35
+
36
+ def append_reference_face(name : str, face : Face) -> None:
37
+ if name not in FACE_STORE.get('reference_faces'):
38
+ FACE_STORE['reference_faces'][name] = []
39
+ FACE_STORE['reference_faces'][name].append(face)
40
+
41
+
42
+ def clear_reference_faces() -> None:
43
+ FACE_STORE['reference_faces'].clear()
facefusion/ffmpeg.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ import tempfile
4
+ from functools import partial
5
+ from typing import List, Optional, cast
6
+
7
+ from tqdm import tqdm
8
+
9
+ import facefusion.choices
10
+ from facefusion import ffmpeg_builder, logger, process_manager, state_manager, wording
11
+ from facefusion.filesystem import get_file_format, remove_file
12
+ from facefusion.temp_helper import get_temp_file_path, get_temp_frames_pattern
13
+ from facefusion.types import AudioBuffer, AudioEncoder, Commands, EncoderSet, Fps, UpdateProgress, VideoEncoder, VideoFormat
14
+ from facefusion.vision import detect_video_duration, detect_video_fps, predict_video_frame_total
15
+
16
+
17
+ def run_ffmpeg_with_progress(commands : Commands, update_progress : UpdateProgress) -> subprocess.Popen[bytes]:
18
+ log_level = state_manager.get_item('log_level')
19
+ commands.extend(ffmpeg_builder.set_progress())
20
+ commands.extend(ffmpeg_builder.cast_stream())
21
+ commands = ffmpeg_builder.run(commands)
22
+ process = subprocess.Popen(commands, stderr = subprocess.PIPE, stdout = subprocess.PIPE)
23
+
24
+ while process_manager.is_processing():
25
+ try:
26
+
27
+ while __line__ := process.stdout.readline().decode().lower():
28
+ if 'frame=' in __line__:
29
+ _, frame_number = __line__.split('frame=')
30
+ update_progress(int(frame_number))
31
+
32
+ if log_level == 'debug':
33
+ log_debug(process)
34
+ process.wait(timeout = 0.5)
35
+ except subprocess.TimeoutExpired:
36
+ continue
37
+ return process
38
+
39
+ if process_manager.is_stopping():
40
+ process.terminate()
41
+ return process
42
+
43
+
44
+ def update_progress(progress : tqdm, frame_number : int) -> None:
45
+ progress.update(frame_number - progress.n)
46
+
47
+
48
+ def run_ffmpeg(commands : Commands) -> subprocess.Popen[bytes]:
49
+ log_level = state_manager.get_item('log_level')
50
+ commands = ffmpeg_builder.run(commands)
51
+ process = subprocess.Popen(commands, stderr = subprocess.PIPE, stdout = subprocess.PIPE)
52
+
53
+ while process_manager.is_processing():
54
+ try:
55
+ if log_level == 'debug':
56
+ log_debug(process)
57
+ process.wait(timeout = 0.5)
58
+ except subprocess.TimeoutExpired:
59
+ continue
60
+ return process
61
+
62
+ if process_manager.is_stopping():
63
+ process.terminate()
64
+ return process
65
+
66
+
67
+ def open_ffmpeg(commands : Commands) -> subprocess.Popen[bytes]:
68
+ commands = ffmpeg_builder.run(commands)
69
+ return subprocess.Popen(commands, stdin = subprocess.PIPE, stdout = subprocess.PIPE)
70
+
71
+
72
+ def log_debug(process : subprocess.Popen[bytes]) -> None:
73
+ _, stderr = process.communicate()
74
+ errors = stderr.decode().split(os.linesep)
75
+
76
+ for error in errors:
77
+ if error.strip():
78
+ logger.debug(error.strip(), __name__)
79
+
80
+
81
+ def get_available_encoder_set() -> EncoderSet:
82
+ available_encoder_set : EncoderSet =\
83
+ {
84
+ 'audio': [],
85
+ 'video': []
86
+ }
87
+ commands = ffmpeg_builder.chain(
88
+ ffmpeg_builder.get_encoders()
89
+ )
90
+ process = run_ffmpeg(commands)
91
+
92
+ while line := process.stdout.readline().decode().lower():
93
+ if line.startswith(' a'):
94
+ audio_encoder = line.split()[1]
95
+
96
+ if audio_encoder in facefusion.choices.output_audio_encoders:
97
+ index = facefusion.choices.output_audio_encoders.index(audio_encoder) #type:ignore[arg-type]
98
+ available_encoder_set['audio'].insert(index, audio_encoder) #type:ignore[arg-type]
99
+ if line.startswith(' v'):
100
+ video_encoder = line.split()[1]
101
+
102
+ if video_encoder in facefusion.choices.output_video_encoders:
103
+ index = facefusion.choices.output_video_encoders.index(video_encoder) #type:ignore[arg-type]
104
+ available_encoder_set['video'].insert(index, video_encoder) #type:ignore[arg-type]
105
+
106
+ return available_encoder_set
107
+
108
+
109
+ def extract_frames(target_path : str, temp_video_resolution : str, temp_video_fps : Fps, trim_frame_start : int, trim_frame_end : int) -> bool:
110
+ extract_frame_total = predict_video_frame_total(target_path, temp_video_fps, trim_frame_start, trim_frame_end)
111
+ temp_frames_pattern = get_temp_frames_pattern(target_path, '%08d')
112
+ commands = ffmpeg_builder.chain(
113
+ ffmpeg_builder.set_input(target_path),
114
+ ffmpeg_builder.set_media_resolution(temp_video_resolution),
115
+ ffmpeg_builder.set_frame_quality(0),
116
+ ffmpeg_builder.select_frame_range(trim_frame_start, trim_frame_end, temp_video_fps),
117
+ ffmpeg_builder.prevent_frame_drop(),
118
+ ffmpeg_builder.set_output(temp_frames_pattern)
119
+ )
120
+
121
+ with tqdm(total = extract_frame_total, desc = wording.get('extracting'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
122
+ process = run_ffmpeg_with_progress(commands, partial(update_progress, progress))
123
+ return process.returncode == 0
124
+
125
+
126
+ def copy_image(target_path : str, temp_image_resolution : str) -> bool:
127
+ temp_image_path = get_temp_file_path(target_path)
128
+ commands = ffmpeg_builder.chain(
129
+ ffmpeg_builder.set_input(target_path),
130
+ ffmpeg_builder.set_media_resolution(temp_image_resolution),
131
+ ffmpeg_builder.set_image_quality(target_path, 100),
132
+ ffmpeg_builder.force_output(temp_image_path)
133
+ )
134
+ return run_ffmpeg(commands).returncode == 0
135
+
136
+
137
+ def finalize_image(target_path : str, output_path : str, output_image_resolution : str) -> bool:
138
+ output_image_quality = state_manager.get_item('output_image_quality')
139
+ temp_image_path = get_temp_file_path(target_path)
140
+ commands = ffmpeg_builder.chain(
141
+ ffmpeg_builder.set_input(temp_image_path),
142
+ ffmpeg_builder.set_media_resolution(output_image_resolution),
143
+ ffmpeg_builder.set_image_quality(target_path, output_image_quality),
144
+ ffmpeg_builder.force_output(output_path)
145
+ )
146
+ return run_ffmpeg(commands).returncode == 0
147
+
148
+
149
+ def read_audio_buffer(target_path : str, audio_sample_rate : int, audio_sample_size : int, audio_channel_total : int) -> Optional[AudioBuffer]:
150
+ commands = ffmpeg_builder.chain(
151
+ ffmpeg_builder.set_input(target_path),
152
+ ffmpeg_builder.ignore_video_stream(),
153
+ ffmpeg_builder.set_audio_sample_rate(audio_sample_rate),
154
+ ffmpeg_builder.set_audio_sample_size(audio_sample_size),
155
+ ffmpeg_builder.set_audio_channel_total(audio_channel_total),
156
+ ffmpeg_builder.cast_stream()
157
+ )
158
+
159
+ process = open_ffmpeg(commands)
160
+ audio_buffer, _ = process.communicate()
161
+ if process.returncode == 0:
162
+ return audio_buffer
163
+ return None
164
+
165
+
166
+ def restore_audio(target_path : str, output_path : str, trim_frame_start : int, trim_frame_end : int) -> bool:
167
+ output_audio_encoder = state_manager.get_item('output_audio_encoder')
168
+ output_audio_quality = state_manager.get_item('output_audio_quality')
169
+ output_audio_volume = state_manager.get_item('output_audio_volume')
170
+ target_video_fps = detect_video_fps(target_path)
171
+ temp_video_path = get_temp_file_path(target_path)
172
+ temp_video_format = cast(VideoFormat, get_file_format(temp_video_path))
173
+ temp_video_duration = detect_video_duration(temp_video_path)
174
+
175
+ output_audio_encoder = fix_audio_encoder(temp_video_format, output_audio_encoder)
176
+ commands = ffmpeg_builder.chain(
177
+ ffmpeg_builder.set_input(temp_video_path),
178
+ ffmpeg_builder.select_media_range(trim_frame_start, trim_frame_end, target_video_fps),
179
+ ffmpeg_builder.set_input(target_path),
180
+ ffmpeg_builder.copy_video_encoder(),
181
+ ffmpeg_builder.set_audio_encoder(output_audio_encoder),
182
+ ffmpeg_builder.set_audio_quality(output_audio_encoder, output_audio_quality),
183
+ ffmpeg_builder.set_audio_volume(output_audio_volume),
184
+ ffmpeg_builder.select_media_stream('0:v:0'),
185
+ ffmpeg_builder.select_media_stream('1:a:0'),
186
+ ffmpeg_builder.set_video_duration(temp_video_duration),
187
+ ffmpeg_builder.force_output(output_path)
188
+ )
189
+ return run_ffmpeg(commands).returncode == 0
190
+
191
+
192
+ def replace_audio(target_path : str, audio_path : str, output_path : str) -> bool:
193
+ output_audio_encoder = state_manager.get_item('output_audio_encoder')
194
+ output_audio_quality = state_manager.get_item('output_audio_quality')
195
+ output_audio_volume = state_manager.get_item('output_audio_volume')
196
+ temp_video_path = get_temp_file_path(target_path)
197
+ temp_video_format = cast(VideoFormat, get_file_format(temp_video_path))
198
+ temp_video_duration = detect_video_duration(temp_video_path)
199
+
200
+ output_audio_encoder = fix_audio_encoder(temp_video_format, output_audio_encoder)
201
+ commands = ffmpeg_builder.chain(
202
+ ffmpeg_builder.set_input(temp_video_path),
203
+ ffmpeg_builder.set_input(audio_path),
204
+ ffmpeg_builder.copy_video_encoder(),
205
+ ffmpeg_builder.set_audio_encoder(output_audio_encoder),
206
+ ffmpeg_builder.set_audio_quality(output_audio_encoder, output_audio_quality),
207
+ ffmpeg_builder.set_audio_volume(output_audio_volume),
208
+ ffmpeg_builder.set_video_duration(temp_video_duration),
209
+ ffmpeg_builder.force_output(output_path)
210
+ )
211
+ return run_ffmpeg(commands).returncode == 0
212
+
213
+
214
+ def merge_video(target_path : str, temp_video_fps : Fps, output_video_resolution : str, output_video_fps : Fps, trim_frame_start : int, trim_frame_end : int) -> bool:
215
+ output_video_encoder = state_manager.get_item('output_video_encoder')
216
+ output_video_quality = state_manager.get_item('output_video_quality')
217
+ output_video_preset = state_manager.get_item('output_video_preset')
218
+ merge_frame_total = predict_video_frame_total(target_path, output_video_fps, trim_frame_start, trim_frame_end)
219
+ temp_video_path = get_temp_file_path(target_path)
220
+ temp_video_format = cast(VideoFormat, get_file_format(temp_video_path))
221
+ temp_frames_pattern = get_temp_frames_pattern(target_path, '%08d')
222
+
223
+ output_video_encoder = fix_video_encoder(temp_video_format, output_video_encoder)
224
+ commands = ffmpeg_builder.chain(
225
+ ffmpeg_builder.set_input_fps(temp_video_fps),
226
+ ffmpeg_builder.set_input(temp_frames_pattern),
227
+ ffmpeg_builder.set_media_resolution(output_video_resolution),
228
+ ffmpeg_builder.set_video_encoder(output_video_encoder),
229
+ ffmpeg_builder.set_video_quality(output_video_encoder, output_video_quality),
230
+ ffmpeg_builder.set_video_preset(output_video_encoder, output_video_preset),
231
+ ffmpeg_builder.set_video_fps(output_video_fps),
232
+ ffmpeg_builder.set_pixel_format(output_video_encoder),
233
+ ffmpeg_builder.set_video_colorspace('bt709'),
234
+ ffmpeg_builder.force_output(temp_video_path)
235
+ )
236
+
237
+ with tqdm(total = merge_frame_total, desc = wording.get('merging'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
238
+ process = run_ffmpeg_with_progress(commands, partial(update_progress, progress))
239
+ return process.returncode == 0
240
+
241
+
242
+ def concat_video(output_path : str, temp_output_paths : List[str]) -> bool:
243
+ concat_video_path = tempfile.mktemp()
244
+
245
+ with open(concat_video_path, 'w') as concat_video_file:
246
+ for temp_output_path in temp_output_paths:
247
+ concat_video_file.write('file \'' + os.path.abspath(temp_output_path) + '\'' + os.linesep)
248
+ concat_video_file.flush()
249
+ concat_video_file.close()
250
+
251
+ output_path = os.path.abspath(output_path)
252
+ commands = ffmpeg_builder.chain(
253
+ ffmpeg_builder.unsafe_concat(),
254
+ ffmpeg_builder.set_input(concat_video_file.name),
255
+ ffmpeg_builder.copy_video_encoder(),
256
+ ffmpeg_builder.copy_audio_encoder(),
257
+ ffmpeg_builder.force_output(output_path)
258
+ )
259
+ process = run_ffmpeg(commands)
260
+ process.communicate()
261
+ remove_file(concat_video_path)
262
+ return process.returncode == 0
263
+
264
+
265
+ def fix_audio_encoder(video_format : VideoFormat, audio_encoder : AudioEncoder) -> AudioEncoder:
266
+ if video_format == 'avi' and audio_encoder == 'libopus':
267
+ return 'aac'
268
+ if video_format == 'm4v':
269
+ return 'aac'
270
+ if video_format == 'mov' and audio_encoder in [ 'flac', 'libopus' ]:
271
+ return 'aac'
272
+ if video_format == 'webm':
273
+ return 'libopus'
274
+ return audio_encoder
275
+
276
+
277
+ def fix_video_encoder(video_format : VideoFormat, video_encoder : VideoEncoder) -> VideoEncoder:
278
+ if video_format == 'm4v':
279
+ return 'libx264'
280
+ if video_format in [ 'mkv', 'mp4' ] and video_encoder == 'rawvideo':
281
+ return 'libx264'
282
+ if video_format == 'mov' and video_encoder == 'libvpx-vp9':
283
+ return 'libx264'
284
+ if video_format == 'webm':
285
+ return 'libvpx-vp9'
286
+ return video_encoder
facefusion/ffmpeg_builder.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ import shutil
3
+ from typing import Optional
4
+
5
+ import numpy
6
+
7
+ from facefusion.filesystem import get_file_format
8
+ from facefusion.types import AudioEncoder, Commands, Duration, Fps, StreamMode, VideoEncoder, VideoPreset
9
+
10
+
11
+ def run(commands : Commands) -> Commands:
12
+ return [ shutil.which('ffmpeg'), '-loglevel', 'error' ] + commands
13
+
14
+
15
+ def chain(*commands : Commands) -> Commands:
16
+ return list(itertools.chain(*commands))
17
+
18
+
19
+ def get_encoders() -> Commands:
20
+ return [ '-encoders' ]
21
+
22
+
23
+ def set_hardware_accelerator(value : str) -> Commands:
24
+ return [ '-hwaccel', value ]
25
+
26
+
27
+ def set_progress() -> Commands:
28
+ return [ '-progress' ]
29
+
30
+
31
+ def set_input(input_path : str) -> Commands:
32
+ return [ '-i', input_path ]
33
+
34
+
35
+ def set_input_fps(input_fps : Fps) -> Commands:
36
+ return [ '-r', str(input_fps)]
37
+
38
+
39
+ def set_output(output_path : str) -> Commands:
40
+ return [ output_path ]
41
+
42
+
43
+ def force_output(output_path : str) -> Commands:
44
+ return [ '-y', output_path ]
45
+
46
+
47
+ def cast_stream() -> Commands:
48
+ return [ '-' ]
49
+
50
+
51
+ def set_stream_mode(stream_mode : StreamMode) -> Commands:
52
+ if stream_mode == 'udp':
53
+ return [ '-f', 'mpegts' ]
54
+ if stream_mode == 'v4l2':
55
+ return [ '-f', 'v4l2' ]
56
+ return []
57
+
58
+
59
+ def set_stream_quality(stream_quality : int) -> Commands:
60
+ return [ '-b:v', str(stream_quality) + 'k' ]
61
+
62
+
63
+ def unsafe_concat() -> Commands:
64
+ return [ '-f', 'concat', '-safe', '0' ]
65
+
66
+
67
+ def set_pixel_format(video_encoder : VideoEncoder) -> Commands:
68
+ if video_encoder == 'rawvideo':
69
+ return [ '-pix_fmt', 'rgb24' ]
70
+ return [ '-pix_fmt', 'yuv420p' ]
71
+
72
+
73
+ def set_frame_quality(frame_quality : int) -> Commands:
74
+ return [ '-q:v', str(frame_quality) ]
75
+
76
+
77
+ def select_frame_range(frame_start : int, frame_end : int, video_fps : Fps) -> Commands:
78
+ if isinstance(frame_start, int) and isinstance(frame_end, int):
79
+ return [ '-vf', 'trim=start_frame=' + str(frame_start) + ':end_frame=' + str(frame_end) + ',fps=' + str(video_fps) ]
80
+ if isinstance(frame_start, int):
81
+ return [ '-vf', 'trim=start_frame=' + str(frame_start) + ',fps=' + str(video_fps) ]
82
+ if isinstance(frame_end, int):
83
+ return [ '-vf', 'trim=end_frame=' + str(frame_end) + ',fps=' + str(video_fps) ]
84
+ return [ '-vf', 'fps=' + str(video_fps) ]
85
+
86
+
87
+ def prevent_frame_drop() -> Commands:
88
+ return [ '-vsync', '0' ]
89
+
90
+
91
+ def select_media_range(frame_start : int, frame_end : int, media_fps : Fps) -> Commands:
92
+ commands = []
93
+
94
+ if isinstance(frame_start, int):
95
+ commands.extend([ '-ss', str(frame_start / media_fps) ])
96
+ if isinstance(frame_end, int):
97
+ commands.extend([ '-to', str(frame_end / media_fps) ])
98
+ return commands
99
+
100
+
101
+ def select_media_stream(media_stream : str) -> Commands:
102
+ return [ '-map', media_stream ]
103
+
104
+
105
+ def set_media_resolution(video_resolution : str) -> Commands:
106
+ return [ '-s', video_resolution ]
107
+
108
+
109
+ def set_image_quality(image_path : str, image_quality : int) -> Commands:
110
+ if get_file_format(image_path) == 'webp':
111
+ image_compression = image_quality
112
+ else:
113
+ image_compression = round(31 - (image_quality * 0.31))
114
+ return [ '-q:v', str(image_compression) ]
115
+
116
+
117
+ def set_audio_encoder(audio_codec : str) -> Commands:
118
+ return [ '-c:a', audio_codec ]
119
+
120
+
121
+ def copy_audio_encoder() -> Commands:
122
+ return set_audio_encoder('copy')
123
+
124
+
125
+ def set_audio_sample_rate(audio_sample_rate : int) -> Commands:
126
+ return [ '-ar', str(audio_sample_rate) ]
127
+
128
+
129
+ def set_audio_sample_size(audio_sample_size : int) -> Commands:
130
+ if audio_sample_size == 16:
131
+ return [ '-f', 's16le' ]
132
+ if audio_sample_size == 32:
133
+ return [ '-f', 's32le' ]
134
+ return []
135
+
136
+
137
+ def set_audio_channel_total(audio_channel_total : int) -> Commands:
138
+ return [ '-ac', str(audio_channel_total) ]
139
+
140
+
141
+ def set_audio_quality(audio_encoder : AudioEncoder, audio_quality : int) -> Commands:
142
+ if audio_encoder == 'aac':
143
+ audio_compression = round(numpy.interp(audio_quality, [ 0, 100 ], [ 0.1, 2.0 ]), 1)
144
+ return [ '-q:a', str(audio_compression) ]
145
+ if audio_encoder == 'libmp3lame':
146
+ audio_compression = round(numpy.interp(audio_quality, [ 0, 100 ], [ 9, 0 ]))
147
+ return [ '-q:a', str(audio_compression) ]
148
+ if audio_encoder == 'libopus':
149
+ audio_bit_rate = round(numpy.interp(audio_quality, [ 0, 100 ], [ 64, 256 ]))
150
+ return [ '-b:a', str(audio_bit_rate) + 'k' ]
151
+ if audio_encoder == 'libvorbis':
152
+ audio_compression = round(numpy.interp(audio_quality, [ 0, 100 ], [ -1, 10 ]), 1)
153
+ return [ '-q:a', str(audio_compression) ]
154
+ return []
155
+
156
+
157
+ def set_audio_volume(audio_volume : int) -> Commands:
158
+ return [ '-filter:a', 'volume=' + str(audio_volume / 100) ]
159
+
160
+
161
+ def set_video_encoder(video_encoder : str) -> Commands:
162
+ return [ '-c:v', video_encoder ]
163
+
164
+
165
+ def copy_video_encoder() -> Commands:
166
+ return set_video_encoder('copy')
167
+
168
+
169
+ def set_video_quality(video_encoder : VideoEncoder, video_quality : int) -> Commands:
170
+ if video_encoder in [ 'libx264', 'libx265' ]:
171
+ video_compression = round(numpy.interp(video_quality, [ 0, 100 ], [ 51, 0 ]))
172
+ return [ '-crf', str(video_compression) ]
173
+ if video_encoder == 'libvpx-vp9':
174
+ video_compression = round(numpy.interp(video_quality, [ 0, 100 ], [ 63, 0 ]))
175
+ return [ '-crf', str(video_compression) ]
176
+ if video_encoder in [ 'h264_nvenc', 'hevc_nvenc' ]:
177
+ video_compression = round(numpy.interp(video_quality, [ 0, 100 ], [ 51, 0 ]))
178
+ return [ '-cq', str(video_compression) ]
179
+ if video_encoder in [ 'h264_amf', 'hevc_amf' ]:
180
+ video_compression = round(numpy.interp(video_quality, [ 0, 100 ], [ 51, 0 ]))
181
+ return [ '-qp_i', str(video_compression), '-qp_p', str(video_compression), '-qp_b', str(video_compression) ]
182
+ if video_encoder in [ 'h264_qsv', 'hevc_qsv' ]:
183
+ video_compression = round(numpy.interp(video_quality, [ 0, 100 ], [ 51, 0 ]))
184
+ return [ '-qp', str(video_compression) ]
185
+ if video_encoder in [ 'h264_videotoolbox', 'hevc_videotoolbox' ]:
186
+ video_bit_rate = round(numpy.interp(video_quality, [ 0, 100 ], [ 1024, 50512 ]))
187
+ return [ '-b:v', str(video_bit_rate) + 'k' ]
188
+ return []
189
+
190
+
191
+ def set_video_preset(video_encoder : VideoEncoder, video_preset : VideoPreset) -> Commands:
192
+ if video_encoder in [ 'libx264', 'libx265' ]:
193
+ return [ '-preset', video_preset ]
194
+ if video_encoder in [ 'h264_nvenc', 'hevc_nvenc' ]:
195
+ return [ '-preset', map_nvenc_preset(video_preset) ]
196
+ if video_encoder in [ 'h264_amf', 'hevc_amf' ]:
197
+ return [ '-quality', map_amf_preset(video_preset) ]
198
+ if video_encoder in [ 'h264_qsv', 'hevc_qsv' ]:
199
+ return [ '-preset', map_qsv_preset(video_preset) ]
200
+ return []
201
+
202
+
203
+ def set_video_colorspace(video_colorspace : str) -> Commands:
204
+ return [ '-colorspace', video_colorspace ]
205
+
206
+
207
+ def set_video_fps(video_fps : Fps) -> Commands:
208
+ return [ '-vf', 'framerate=fps=' + str(video_fps) ]
209
+
210
+
211
+ def set_video_duration(video_duration : Duration) -> Commands:
212
+ return [ '-t', str(video_duration) ]
213
+
214
+
215
+ def capture_video() -> Commands:
216
+ return [ '-f', 'rawvideo', '-pix_fmt', 'rgb24' ]
217
+
218
+
219
+ def ignore_video_stream() -> Commands:
220
+ return [ '-vn' ]
221
+
222
+
223
+ def map_nvenc_preset(video_preset : VideoPreset) -> Optional[str]:
224
+ if video_preset in [ 'ultrafast', 'superfast', 'veryfast', 'faster', 'fast' ]:
225
+ return 'fast'
226
+ if video_preset == 'medium':
227
+ return 'medium'
228
+ if video_preset in [ 'slow', 'slower', 'veryslow' ]:
229
+ return 'slow'
230
+ return None
231
+
232
+
233
+ def map_amf_preset(video_preset : VideoPreset) -> Optional[str]:
234
+ if video_preset in [ 'ultrafast', 'superfast', 'veryfast' ]:
235
+ return 'speed'
236
+ if video_preset in [ 'faster', 'fast', 'medium' ]:
237
+ return 'balanced'
238
+ if video_preset in [ 'slow', 'slower', 'veryslow' ]:
239
+ return 'quality'
240
+ return None
241
+
242
+
243
+ def map_qsv_preset(video_preset : VideoPreset) -> Optional[str]:
244
+ if video_preset in [ 'ultrafast', 'superfast', 'veryfast' ]:
245
+ return 'veryfast'
246
+ if video_preset in [ 'faster', 'fast', 'medium', 'slow', 'slower', 'veryslow' ]:
247
+ return video_preset
248
+ return None
facefusion/filesystem.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import os
3
+ import shutil
4
+ from typing import List, Optional
5
+
6
+ import facefusion.choices
7
+
8
+
9
+ def get_file_size(file_path : str) -> int:
10
+ if is_file(file_path):
11
+ return os.path.getsize(file_path)
12
+ return 0
13
+
14
+
15
+ def get_file_name(file_path : str) -> Optional[str]:
16
+ file_name, _ = os.path.splitext(os.path.basename(file_path))
17
+
18
+ if file_name:
19
+ return file_name
20
+ return None
21
+
22
+
23
+ def get_file_extension(file_path : str) -> Optional[str]:
24
+ _, file_extension = os.path.splitext(file_path)
25
+
26
+ if file_extension:
27
+ return file_extension.lower()
28
+ return None
29
+
30
+
31
+ def get_file_format(file_path : str) -> Optional[str]:
32
+ file_extension = get_file_extension(file_path)
33
+
34
+ if file_extension:
35
+ if file_extension == '.jpg':
36
+ return 'jpeg'
37
+ if file_extension == '.tif':
38
+ return 'tiff'
39
+ return file_extension.lstrip('.')
40
+ return None
41
+
42
+
43
+ def same_file_extension(first_file_path : str, second_file_path : str) -> bool:
44
+ first_file_extension = get_file_extension(first_file_path)
45
+ second_file_extension = get_file_extension(second_file_path)
46
+
47
+ if first_file_extension and second_file_extension:
48
+ return get_file_extension(first_file_path) == get_file_extension(second_file_path)
49
+ return False
50
+
51
+
52
+ def is_file(file_path : str) -> bool:
53
+ if file_path:
54
+ return os.path.isfile(file_path)
55
+ return False
56
+
57
+
58
+ def is_audio(audio_path : str) -> bool:
59
+ return is_file(audio_path) and get_file_format(audio_path) in facefusion.choices.audio_formats
60
+
61
+
62
+ def has_audio(audio_paths : List[str]) -> bool:
63
+ if audio_paths:
64
+ return any(map(is_audio, audio_paths))
65
+ return False
66
+
67
+
68
+ def are_audios(audio_paths : List[str]) -> bool:
69
+ if audio_paths:
70
+ return all(map(is_audio, audio_paths))
71
+ return False
72
+
73
+
74
+ def is_image(image_path : str) -> bool:
75
+ return is_file(image_path) and get_file_format(image_path) in facefusion.choices.image_formats
76
+
77
+
78
+ def has_image(image_paths : List[str]) -> bool:
79
+ if image_paths:
80
+ return any(is_image(image_path) for image_path in image_paths)
81
+ return False
82
+
83
+
84
+ def are_images(image_paths : List[str]) -> bool:
85
+ if image_paths:
86
+ return all(map(is_image, image_paths))
87
+ return False
88
+
89
+
90
+ def is_video(video_path : str) -> bool:
91
+ return is_file(video_path) and get_file_format(video_path) in facefusion.choices.video_formats
92
+
93
+
94
+ def has_video(video_paths : List[str]) -> bool:
95
+ if video_paths:
96
+ return any(map(is_video, video_paths))
97
+ return False
98
+
99
+
100
+ def are_videos(video_paths : List[str]) -> bool:
101
+ if video_paths:
102
+ return any(map(is_video, video_paths))
103
+ return False
104
+
105
+
106
+ def filter_audio_paths(paths : List[str]) -> List[str]:
107
+ if paths:
108
+ return [ path for path in paths if is_audio(path) ]
109
+ return []
110
+
111
+
112
+ def filter_image_paths(paths : List[str]) -> List[str]:
113
+ if paths:
114
+ return [ path for path in paths if is_image(path) ]
115
+ return []
116
+
117
+
118
+ def copy_file(file_path : str, move_path : str) -> bool:
119
+ if is_file(file_path):
120
+ shutil.copy(file_path, move_path)
121
+ return is_file(move_path)
122
+ return False
123
+
124
+
125
+ def move_file(file_path : str, move_path : str) -> bool:
126
+ if is_file(file_path):
127
+ shutil.move(file_path, move_path)
128
+ return not is_file(file_path) and is_file(move_path)
129
+ return False
130
+
131
+
132
+ def remove_file(file_path : str) -> bool:
133
+ if is_file(file_path):
134
+ os.remove(file_path)
135
+ return not is_file(file_path)
136
+ return False
137
+
138
+
139
+ def resolve_file_paths(directory_path : str) -> List[str]:
140
+ file_paths : List[str] = []
141
+
142
+ if is_directory(directory_path):
143
+ file_names_and_extensions = sorted(os.listdir(directory_path))
144
+
145
+ for file_name_and_extension in file_names_and_extensions:
146
+ if not file_name_and_extension.startswith(('.', '__')):
147
+ file_path = os.path.join(directory_path, file_name_and_extension)
148
+ file_paths.append(file_path)
149
+
150
+ return file_paths
151
+
152
+
153
+ def resolve_file_pattern(file_pattern : str) -> List[str]:
154
+ if in_directory(file_pattern):
155
+ return sorted(glob.glob(file_pattern))
156
+ return []
157
+
158
+
159
+ def is_directory(directory_path : str) -> bool:
160
+ if directory_path:
161
+ return os.path.isdir(directory_path)
162
+ return False
163
+
164
+
165
+ def in_directory(file_path : str) -> bool:
166
+ if file_path:
167
+ directory_path = os.path.dirname(file_path)
168
+ if directory_path:
169
+ return not is_directory(file_path) and is_directory(directory_path)
170
+ return False
171
+
172
+
173
+ def create_directory(directory_path : str) -> bool:
174
+ if directory_path and not is_file(directory_path):
175
+ os.makedirs(directory_path, exist_ok = True)
176
+ return is_directory(directory_path)
177
+ return False
178
+
179
+
180
+ def remove_directory(directory_path : str) -> bool:
181
+ if is_directory(directory_path):
182
+ shutil.rmtree(directory_path, ignore_errors = True)
183
+ return not is_directory(directory_path)
184
+ return False
185
+
186
+
187
+ def resolve_relative_path(path : str) -> str:
188
+ return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
facefusion/hash_helper.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import zlib
3
+ from typing import Optional
4
+
5
+ from facefusion.filesystem import get_file_name, is_file
6
+
7
+
8
+ def create_hash(content : bytes) -> str:
9
+ return format(zlib.crc32(content), '08x')
10
+
11
+
12
+ def validate_hash(validate_path : str) -> bool:
13
+ hash_path = get_hash_path(validate_path)
14
+
15
+ if is_file(hash_path):
16
+ with open(hash_path) as hash_file:
17
+ hash_content = hash_file.read()
18
+
19
+ with open(validate_path, 'rb') as validate_file:
20
+ validate_content = validate_file.read()
21
+
22
+ return create_hash(validate_content) == hash_content
23
+ return False
24
+
25
+
26
+ def get_hash_path(validate_path : str) -> Optional[str]:
27
+ if is_file(validate_path):
28
+ validate_directory_path, file_name_and_extension = os.path.split(validate_path)
29
+ validate_file_name = get_file_name(file_name_and_extension)
30
+
31
+ return os.path.join(validate_directory_path, validate_file_name + '.hash')
32
+ return None
facefusion/inference_manager.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from time import sleep
3
+ from typing import List
4
+
5
+ from onnxruntime import InferenceSession
6
+
7
+ from facefusion import process_manager, state_manager
8
+ from facefusion.app_context import detect_app_context
9
+ from facefusion.execution import create_inference_session_providers
10
+ from facefusion.filesystem import is_file
11
+ from facefusion.types import DownloadSet, ExecutionProvider, InferencePool, InferencePoolSet
12
+
13
+ INFERENCE_POOL_SET : InferencePoolSet =\
14
+ {
15
+ 'cli': {},
16
+ 'ui': {}
17
+ }
18
+
19
+
20
+ def get_inference_pool(module_name : str, model_names : List[str], model_source_set : DownloadSet) -> InferencePool:
21
+ while process_manager.is_checking():
22
+ sleep(0.5)
23
+ execution_device_id = state_manager.get_item('execution_device_id')
24
+ execution_providers = resolve_execution_providers(module_name)
25
+ app_context = detect_app_context()
26
+ inference_context = get_inference_context(module_name, model_names, execution_device_id, execution_providers)
27
+
28
+ if app_context == 'cli' and INFERENCE_POOL_SET.get('ui').get(inference_context):
29
+ INFERENCE_POOL_SET['cli'][inference_context] = INFERENCE_POOL_SET.get('ui').get(inference_context)
30
+ if app_context == 'ui' and INFERENCE_POOL_SET.get('cli').get(inference_context):
31
+ INFERENCE_POOL_SET['ui'][inference_context] = INFERENCE_POOL_SET.get('cli').get(inference_context)
32
+ if not INFERENCE_POOL_SET.get(app_context).get(inference_context):
33
+ INFERENCE_POOL_SET[app_context][inference_context] = create_inference_pool(model_source_set, execution_device_id, execution_providers)
34
+
35
+ return INFERENCE_POOL_SET.get(app_context).get(inference_context)
36
+
37
+
38
+ def create_inference_pool(model_source_set : DownloadSet, execution_device_id : str, execution_providers : List[ExecutionProvider]) -> InferencePool:
39
+ inference_pool : InferencePool = {}
40
+
41
+ for model_name in model_source_set.keys():
42
+ model_path = model_source_set.get(model_name).get('path')
43
+ if is_file(model_path):
44
+ inference_pool[model_name] = create_inference_session(model_path, execution_device_id, execution_providers)
45
+
46
+ return inference_pool
47
+
48
+
49
+ def clear_inference_pool(module_name : str, model_names : List[str]) -> None:
50
+ execution_device_id = state_manager.get_item('execution_device_id')
51
+ execution_providers = resolve_execution_providers(module_name)
52
+ app_context = detect_app_context()
53
+ inference_context = get_inference_context(module_name, model_names, execution_device_id, execution_providers)
54
+
55
+ if INFERENCE_POOL_SET.get(app_context).get(inference_context):
56
+ del INFERENCE_POOL_SET[app_context][inference_context]
57
+
58
+
59
+ def create_inference_session(model_path : str, execution_device_id : str, execution_providers : List[ExecutionProvider]) -> InferenceSession:
60
+ inference_session_providers = create_inference_session_providers(execution_device_id, execution_providers)
61
+ return InferenceSession(model_path, providers = inference_session_providers)
62
+
63
+
64
+ def get_inference_context(module_name : str, model_names : List[str], execution_device_id : str, execution_providers : List[ExecutionProvider]) -> str:
65
+ inference_context = '.'.join([ module_name ] + model_names + [ execution_device_id ] + list(execution_providers))
66
+ return inference_context
67
+
68
+
69
+ def resolve_execution_providers(module_name : str) -> List[ExecutionProvider]:
70
+ module = importlib.import_module(module_name)
71
+
72
+ if hasattr(module, 'resolve_execution_providers'):
73
+ return getattr(module, 'resolve_execution_providers')()
74
+ return state_manager.get_item('execution_providers')
facefusion/installer.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import signal
4
+ import subprocess
5
+ import sys
6
+ from argparse import ArgumentParser, HelpFormatter
7
+ from functools import partial
8
+ from types import FrameType
9
+
10
+ from facefusion import metadata, wording
11
+ from facefusion.common_helper import is_linux, is_windows
12
+
13
+ ONNXRUNTIME_SET =\
14
+ {
15
+ 'default': ('onnxruntime', '1.22.0')
16
+ }
17
+ if is_windows() or is_linux():
18
+ ONNXRUNTIME_SET['cuda'] = ('onnxruntime-gpu', '1.22.0')
19
+ ONNXRUNTIME_SET['openvino'] = ('onnxruntime-openvino', '1.22.0')
20
+ if is_windows():
21
+ ONNXRUNTIME_SET['directml'] = ('onnxruntime-directml', '1.17.3')
22
+ if is_linux():
23
+ ONNXRUNTIME_SET['rocm'] = ('onnxruntime-rocm', '1.21.0')
24
+
25
+
26
+ def cli() -> None:
27
+ signal.signal(signal.SIGINT, signal_exit)
28
+ program = ArgumentParser(formatter_class = partial(HelpFormatter, max_help_position = 50))
29
+ program.add_argument('--onnxruntime', help = wording.get('help.install_dependency').format(dependency = 'onnxruntime'), choices = ONNXRUNTIME_SET.keys(), required = True)
30
+ program.add_argument('--skip-conda', help = wording.get('help.skip_conda'), action = 'store_true')
31
+ program.add_argument('-v', '--version', version = metadata.get('name') + ' ' + metadata.get('version'), action = 'version')
32
+ run(program)
33
+
34
+
35
+ def signal_exit(signum : int, frame : FrameType) -> None:
36
+ sys.exit(0)
37
+
38
+
39
+ def run(program : ArgumentParser) -> None:
40
+ args = program.parse_args()
41
+ has_conda = 'CONDA_PREFIX' in os.environ
42
+ onnxruntime_name, onnxruntime_version = ONNXRUNTIME_SET.get(args.onnxruntime)
43
+
44
+ if not args.skip_conda and not has_conda:
45
+ sys.stdout.write(wording.get('conda_not_activated') + os.linesep)
46
+ sys.exit(1)
47
+
48
+ with open('requirements.txt') as file:
49
+
50
+ for line in file.readlines():
51
+ __line__ = line.strip()
52
+ if not __line__.startswith('onnxruntime'):
53
+ subprocess.call([ shutil.which('pip'), 'install', line, '--force-reinstall' ])
54
+
55
+ if args.onnxruntime == 'rocm':
56
+ python_id = 'cp' + str(sys.version_info.major) + str(sys.version_info.minor)
57
+
58
+ if python_id in [ 'cp310', 'cp312' ]:
59
+ wheel_name = 'onnxruntime_rocm-' + onnxruntime_version + '-' + python_id + '-' + python_id + '-linux_x86_64.whl'
60
+ wheel_url = 'https://repo.radeon.com/rocm/manylinux/rocm-rel-6.4/' + wheel_name
61
+ subprocess.call([ shutil.which('pip'), 'install', wheel_url, '--force-reinstall' ])
62
+ else:
63
+ subprocess.call([ shutil.which('pip'), 'install', onnxruntime_name + '==' + onnxruntime_version, '--force-reinstall' ])
64
+
65
+ if args.onnxruntime == 'cuda' and has_conda:
66
+ library_paths = []
67
+
68
+ if is_linux():
69
+ if os.getenv('LD_LIBRARY_PATH'):
70
+ library_paths = os.getenv('LD_LIBRARY_PATH').split(os.pathsep)
71
+
72
+ python_id = 'python' + str(sys.version_info.major) + '.' + str(sys.version_info.minor)
73
+ library_paths.extend(
74
+ [
75
+ os.path.join(os.getenv('CONDA_PREFIX'), 'lib'),
76
+ os.path.join(os.getenv('CONDA_PREFIX'), 'lib', python_id, 'site-packages', 'tensorrt_libs')
77
+ ])
78
+ library_paths = list(dict.fromkeys([ library_path for library_path in library_paths if os.path.exists(library_path) ]))
79
+
80
+ subprocess.call([ shutil.which('conda'), 'env', 'config', 'vars', 'set', 'LD_LIBRARY_PATH=' + os.pathsep.join(library_paths) ])
81
+
82
+ if is_windows():
83
+ if os.getenv('PATH'):
84
+ library_paths = os.getenv('PATH').split(os.pathsep)
85
+
86
+ library_paths.extend(
87
+ [
88
+ os.path.join(os.getenv('CONDA_PREFIX'), 'Lib'),
89
+ os.path.join(os.getenv('CONDA_PREFIX'), 'Lib', 'site-packages', 'tensorrt_libs')
90
+ ])
91
+ library_paths = list(dict.fromkeys([ library_path for library_path in library_paths if os.path.exists(library_path) ]))
92
+
93
+ subprocess.call([ shutil.which('conda'), 'env', 'config', 'vars', 'set', 'PATH=' + os.pathsep.join(library_paths) ])
94
+
95
+ if args.onnxruntime == 'directml':
96
+ subprocess.call([ shutil.which('pip'), 'install', 'numpy==1.26.4', '--force-reinstall' ])
facefusion/jobs/__init__.py ADDED
File without changes