Duzduran commited on
Commit
c185beb
·
1 Parent(s): 12b4877

initial release

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -33,3 +33,14 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.nii filter=lfs diff=lfs merge=lfs -text
37
+ examples/ex_1/BraTS20_Training_001_flair.nii filter=lfs diff=lfs merge=lfs -text
38
+ examples/ex_1/BraTS20_Training_001_seg.nii filter=lfs diff=lfs merge=lfs -text
39
+ examples/ex_1/BraTS20_Training_001_t1.nii filter=lfs diff=lfs merge=lfs -text
40
+ examples/ex_1/BraTS20_Training_001_t1ce.nii filter=lfs diff=lfs merge=lfs -text
41
+ examples/ex_1/BraTS20_Training_001_t2.nii filter=lfs diff=lfs merge=lfs -text
42
+ examples/ex_2/BraTS20_Training_002_flair.nii filter=lfs diff=lfs merge=lfs -text
43
+ examples/ex_2/BraTS20_Training_002_t2.nii filter=lfs diff=lfs merge=lfs -text
44
+ examples/ex_2/BraTS20_Training_002_t1ce.nii filter=lfs diff=lfs merge=lfs -text
45
+ examples/ex_2/BraTS20_Training_002_t1.nii filter=lfs diff=lfs merge=lfs -text
46
+ examples/ex_2/BraTS20_Training_002_seg.nii filter=lfs diff=lfs merge=lfs -text
.idea/.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # Default ignored files
2
+ /shelf/
3
+ /workspace.xml
4
+ # Editor-based HTTP Client requests
5
+ /httpRequests/
6
+ # Datasource local storage ignored files
7
+ /dataSources/
8
+ /dataSources.local.xml
.idea/Brain-Tumor-Segmentation.iml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <module type="PYTHON_MODULE" version="4">
3
+ <component name="NewModuleRootManager">
4
+ <content url="file://$MODULE_DIR$" />
5
+ <orderEntry type="inheritedJdk" />
6
+ <orderEntry type="sourceFolder" forTests="false" />
7
+ </component>
8
+ </module>
.idea/inspectionProfiles/Project_Default.xml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <profile version="1.0">
3
+ <option name="myName" value="Project Default" />
4
+ <inspection_tool class="DuplicatedCode" enabled="true" level="WEAK WARNING" enabled_by_default="true">
5
+ <Languages>
6
+ <language minSize="89" name="Python" />
7
+ </Languages>
8
+ </inspection_tool>
9
+ <inspection_tool class="Eslint" enabled="true" level="WARNING" enabled_by_default="true" />
10
+ <inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
11
+ <option name="ignoredErrors">
12
+ <list>
13
+ <option value="N806" />
14
+ </list>
15
+ </option>
16
+ </inspection_tool>
17
+ <inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
18
+ <option name="ignoredIdentifiers">
19
+ <list>
20
+ <option value="map.__getitem__" />
21
+ <option value="cv2.drawMarker" />
22
+ <option value="cv2.putText" />
23
+ </list>
24
+ </option>
25
+ </inspection_tool>
26
+ </profile>
27
+ </component>
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
.idea/modules.xml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectModuleManager">
4
+ <modules>
5
+ <module fileurl="file://$PROJECT_DIR$/.idea/Brain-Tumor-Segmentation.iml" filepath="$PROJECT_DIR$/.idea/Brain-Tumor-Segmentation.iml" />
6
+ </modules>
7
+ </component>
8
+ </project>
.idea/vcs.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="VcsDirectoryMappings">
4
+ <mapping directory="$PROJECT_DIR$" vcs="Git" />
5
+ </component>
6
+ </project>
app.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import nibabel as nib
4
+ from PIL import Image
5
+ import io
6
+ import matplotlib.pyplot as plt
7
+ import gradio as gr
8
+
9
+ from huggingface_hub import from_pretrained_keras
10
+
11
+ model = from_pretrained_keras("duzduran/NeuroNest3D")
12
+ # Constants
13
+ IMG_SIZE = 128
14
+ VOLUME_SLICES = 100
15
+ VOLUME_START_AT = 22
16
+ SEGMENT_CLASSES = ['NOT tumor', 'ENHANCING', 'CORE', 'WHOLE']
17
+
18
+
19
+ def predictByPath(flair, ce):
20
+ X = np.empty((VOLUME_SLICES, IMG_SIZE, IMG_SIZE, 2))
21
+
22
+ for j in range(VOLUME_SLICES):
23
+ X[j, :, :, 0] = cv2.resize(flair[:, :, j + VOLUME_START_AT], (IMG_SIZE, IMG_SIZE))
24
+ X[j, :, :, 1] = cv2.resize(ce[:, :, j + VOLUME_START_AT], (IMG_SIZE, IMG_SIZE))
25
+
26
+ # Normalize and make predictions
27
+ X_normalized = X / np.max(X)
28
+ return model.predict(X_normalized, verbose=1)
29
+
30
+
31
+ def create_subplot_image(origImage, gt, predictions, slice_index, start_at, img_size):
32
+ plt.figure(figsize=(18, 10))
33
+ f, axarr = plt.subplots(1, 6, figsize=(18, 10))
34
+
35
+ for i in range(6):
36
+ axarr[i].imshow(cv2.resize(origImage[:, :, slice_index + start_at], (img_size, img_size)), cmap="gray",
37
+ interpolation='none')
38
+
39
+ # Original image flair
40
+ axarr[0].title.set_text('Original image flair')
41
+
42
+ # Ground truth
43
+ curr_gt = cv2.resize(gt[:, :, slice_index + start_at], (img_size, img_size), interpolation=cv2.INTER_NEAREST)
44
+ axarr[1].imshow(curr_gt, cmap="Reds", interpolation='none', alpha=0.3)
45
+ axarr[1].title.set_text('Ground truth')
46
+
47
+ # All classes
48
+ axarr[2].imshow(predictions[slice_index, :, :, 1:4], cmap="Reds", interpolation='none', alpha=0.3)
49
+ axarr[2].title.set_text('All classes')
50
+
51
+ SEGMENT_CLASSES
52
+ # Class-specific predictions
53
+ for i in range(1, 4): # Adjusted to loop over the available prediction classes
54
+ axarr[i + 2].imshow(predictions[slice_index, :, :, i], cmap="OrRd", interpolation='none', alpha=0.3)
55
+ axarr[i + 2].title.set_text(f'{SEGMENT_CLASSES[i]} predicted')
56
+
57
+ # Convert plot to image
58
+ buf = io.BytesIO()
59
+ plt.savefig(buf, format='png')
60
+ plt.close(f)
61
+ buf.seek(0)
62
+ img = Image.open(buf)
63
+ return img
64
+
65
+
66
+ examples = {
67
+ "Example 1": {"flair": "examples/ex_1/BraTS20_Training_001_flair.nii",
68
+ "t1ce": "examples/ex_1/BraTS20_Training_001_t1ce.nii",
69
+ "seg": "examples/ex_1/BraTS20_Training_001_seg.nii"},
70
+
71
+ "Example 2": {"flair": "examples/ex_2/BraTS20_Training_002_flair.nii",
72
+ "t1ce": "examples/ex_2/BraTS20_Training_002_t1ce.nii",
73
+ "seg": "examples/ex_2/BraTS20_Training_002_seg.nii"},
74
+ }
75
+
76
+
77
+ def automatic_process(example_key):
78
+ paths = examples[example_key]
79
+ print(paths["flair"])
80
+
81
+ flair = nib.load(paths["flair"]).get_fdata()
82
+ t1ce = nib.load(paths["t1ce"]).get_fdata()
83
+ seg = nib.load(paths["seg"]).get_fdata()
84
+
85
+ # Default slice index
86
+ slice_index = 50
87
+
88
+ return process_and_display_direct(flair, t1ce, seg, slice_index)
89
+
90
+
91
+ def process_and_display_direct(flair_data, t1ce_data, seg_data, slice_index):
92
+ flair = np.array(flair_data)
93
+ t1ce = np.array(t1ce_data)
94
+ seg = np.array(seg_data)
95
+
96
+ p = predictByPath(flair, t1ce)
97
+
98
+ # Create the subplot image
99
+ subplot_img = create_subplot_image(flair, seg, p, slice_index, VOLUME_START_AT, IMG_SIZE)
100
+
101
+ return subplot_img
102
+
103
+
104
+ def process_and_display(flair_file, t1ce_file, seg_file, slice_index):
105
+ if not flair_file or not t1ce_file or not seg_file:
106
+ return None # Ensure all files are uploaded
107
+
108
+ flair = nib.load(flair_file.name).get_fdata()
109
+ t1ce = nib.load(t1ce_file.name).get_fdata()
110
+ gt = nib.load(seg_file.name).get_fdata()
111
+
112
+ p = predictByPath(flair, t1ce)
113
+
114
+ # Create the subplot image
115
+ subplot_img = create_subplot_image(flair, gt, p, slice_index, VOLUME_START_AT, IMG_SIZE)
116
+
117
+ return subplot_img
118
+
119
+
120
+ # Gradio Interface
121
+ with gr.Blocks() as demo:
122
+ with gr.Row():
123
+ flair_input = gr.File(label="Upload Flair NIfTI File")
124
+ t1ce_input = gr.File(label="Upload T1ce NIfTI File")
125
+ seg_input = gr.File(label="Upload Seg NIfTI File")
126
+ slice_input = gr.Slider(minimum=0, maximum=VOLUME_SLICES - 1, label="Slice Index")
127
+ #eval_class_input = gr.Dropdown(choices=list(range(len(SEGMENT_CLASSES))), label="Select Class")
128
+ submit_button = gr.Button("Submit")
129
+
130
+ with gr.Row():
131
+ example_selector = gr.Dropdown(list(examples.keys()), label="Select Example")
132
+ auto_button = gr.Button("Load Example")
133
+
134
+ output_image = gr.Image(label="Visualization")
135
+
136
+ submit_button.click(
137
+ process_and_display,
138
+ inputs=[flair_input, t1ce_input, seg_input, slice_input],
139
+ outputs=output_image
140
+ )
141
+
142
+ auto_button.click(
143
+ automatic_process,
144
+ inputs=[example_selector],
145
+ outputs=output_image
146
+ )
147
+
148
+ demo.launch()
environment.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: my_ml_env
2
+ channels:
3
+ - conda-forge
4
+ - defaults
5
+ dependencies:
6
+ - python=3.8
7
+ - pip
8
+ - gradio
9
+ - numpy
10
+ - pandas
11
+ - seaborn
12
+ - matplotlib
13
+ - scikit-image
14
+ - pillow
15
+ - tensorflow
16
+ - keras
17
+ - scikit-learn
18
+ - opencv
19
+ - nibabel
20
+ - nilearn
21
+ - tensorflow-estimator
22
+ - h5py
23
+ - pip:
24
+ - git+https://github.com/miykael/gif_your_nifti
25
+
examples/.DS_Store ADDED
Binary file (6.15 kB). View file
 
examples/ex_1/.DS_Store ADDED
Binary file (6.15 kB). View file
 
examples/ex_1/BraTS20_Training_001_flair.nii ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1671dfab75fbaaede29989011cabcef12b7825c72a315f293441b698a8e8d39c
3
+ size 17858880
examples/ex_1/BraTS20_Training_001_seg.nii ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56f39a503ebc4df200a5b9872b1ace83d92fa775d55b6ce301f12d2f63507180
3
+ size 8930976
examples/ex_1/BraTS20_Training_001_t1.nii ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6440b711f433a7071379088fc61ad9e0ff01ae5f551a7e5f006135c5adcf0f83
3
+ size 17858880
examples/ex_1/BraTS20_Training_001_t1ce.nii ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed3732f26987226748147562cc64e58958564a6a7e47611b726773fd4e057b99
3
+ size 17858880
examples/ex_1/BraTS20_Training_001_t2.nii ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0918a2aed1e8aac1a802bf899940f9032b0e61bae70b35c9fa93d35e7e27c569
3
+ size 17858880
examples/ex_2/.DS_Store ADDED
Binary file (6.15 kB). View file
 
examples/ex_2/BraTS20_Training_002_flair.nii ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f51b5715db978afb246dc00b9e2950bcdb7a48ff0933f0a1b8f4ebd0d08c8613
3
+ size 17858896
examples/ex_2/BraTS20_Training_002_seg.nii ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e5476e303ce247b623ea9fb25fc08833831560c71bc9bc5b93e637f0482fdb5
3
+ size 8930976
examples/ex_2/BraTS20_Training_002_t1.nii ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0cc02bda2df29e8100459fe730b9cd5bf3350ce5d79a53ea17c39d8b9378c50
3
+ size 17858880
examples/ex_2/BraTS20_Training_002_t1ce.nii ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd9402472cbc67d9c0f65102fc198c23649c509deceb418fc2c69cbd91ddbd78
3
+ size 17858880
examples/ex_2/BraTS20_Training_002_t2.nii ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:741f3823e914e21efeff9d1795e84bef7ee3acf701d50f758b32e658ab094cda
3
+ size 17858880
loss.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import keras.backend as K
2
+
3
+ # dice loss as defined above for 4 classes
4
+ def dice_coef(y_true, y_pred, smooth=1.0):
5
+ class_num = 4
6
+ for i in range(class_num):
7
+ y_true_f = K.flatten(y_true[:,:,:,i])
8
+ y_pred_f = K.flatten(y_pred[:,:,:,i])
9
+ intersection = K.sum(y_true_f * y_pred_f)
10
+ loss = ((2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth))
11
+ # K.print_tensor(loss, message='loss value for class {} : '.format(SEGMENT_CLASSES[i]))
12
+ if i == 0:
13
+ total_loss = loss
14
+ else:
15
+ total_loss = total_loss + loss
16
+ total_loss = total_loss / class_num
17
+ # K.print_tensor(total_loss, message=' total dice coef: ')
18
+ return total_loss
19
+
20
+
21
+
22
+ # define per class evaluation of dice coef
23
+ # inspired by https://github.com/keras-team/keras/issues/9395
24
+ def dice_coef_necrotic(y_true, y_pred, epsilon=1e-6):
25
+ intersection = K.sum(K.abs(y_true[:,:,:,1] * y_pred[:,:,:,1]))
26
+ return (2. * intersection) / (K.sum(K.square(y_true[:,:,:,1])) + K.sum(K.square(y_pred[:,:,:,1])) + epsilon)
27
+
28
+ def dice_coef_edema(y_true, y_pred, epsilon=1e-6):
29
+ intersection = K.sum(K.abs(y_true[:,:,:,2] * y_pred[:,:,:,2]))
30
+ return (2. * intersection) / (K.sum(K.square(y_true[:,:,:,2])) + K.sum(K.square(y_pred[:,:,:,2])) + epsilon)
31
+
32
+ def dice_coef_enhancing(y_true, y_pred, epsilon=1e-6):
33
+ intersection = K.sum(K.abs(y_true[:,:,:,3] * y_pred[:,:,:,3]))
34
+ return (2. * intersection) / (K.sum(K.square(y_true[:,:,:,3])) + K.sum(K.square(y_pred[:,:,:,3])) + epsilon)
35
+
36
+
37
+
38
+ # Computing Precision
39
+ def precision(y_true, y_pred):
40
+ true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
41
+ predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
42
+ precision = true_positives / (predicted_positives + K.epsilon())
43
+ return precision
44
+
45
+
46
+ # Computing Sensitivity
47
+ def sensitivity(y_true, y_pred):
48
+ true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
49
+ possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
50
+ return true_positives / (possible_positives + K.epsilon())
51
+
52
+
53
+ # Computing Specificity
54
+ def specificity(y_true, y_pred):
55
+ true_negatives = K.sum(K.round(K.clip((1-y_true) * (1-y_pred), 0, 1)))
56
+ possible_negatives = K.sum(K.round(K.clip(1-y_true, 0, 1)))
57
+ return true_negatives / (possible_negatives + K.epsilon())