File size: 12,911 Bytes
38e2f41
 
 
 
30dcad4
3b87138
68da44b
 
38e2f41
 
30dcad4
38e2f41
 
68da44b
38e2f41
68da44b
38e2f41
30dcad4
38e2f41
 
 
68da44b
30dcad4
 
68da44b
38e2f41
30dcad4
68da44b
30dcad4
3b87138
68da44b
 
30dcad4
68da44b
3b87138
68da44b
 
 
 
 
 
3b87138
68da44b
 
 
 
 
3b87138
68da44b
 
 
 
 
 
 
 
3b87138
 
 
68da44b
 
 
3b87138
68da44b
 
3b87138
68da44b
 
 
 
3b87138
 
68da44b
 
3b87138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e2f41
 
 
68da44b
38e2f41
 
68da44b
 
30dcad4
 
38e2f41
 
68da44b
38e2f41
 
68da44b
38e2f41
30dcad4
68da44b
 
30dcad4
68da44b
 
 
38e2f41
3b87138
68da44b
 
3b87138
 
68da44b
 
30dcad4
3b87138
 
 
 
 
68da44b
3b87138
 
 
 
 
 
 
 
 
 
68da44b
3b87138
 
 
 
 
68da44b
3b87138
 
 
68da44b
3b87138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30dcad4
3b87138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e2f41
 
 
 
68da44b
38e2f41
 
3b87138
 
 
 
 
 
 
 
 
 
 
 
 
 
38e2f41
30dcad4
38e2f41
 
68da44b
 
30dcad4
3b87138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e2f41
 
3b87138
30dcad4
3b87138
 
 
 
 
 
38e2f41
 
30dcad4
38e2f41
3b87138
68da44b
3b87138
 
 
 
 
 
 
 
 
 
 
 
 
30dcad4
68da44b
3b87138
 
 
 
 
 
 
 
 
 
30dcad4
68da44b
3b87138
 
 
 
30dcad4
 
3b87138
38e2f41
3b87138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30dcad4
68da44b
 
3b87138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68da44b
38e2f41
30dcad4
3b87138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68da44b
 
 
 
 
38e2f41
30dcad4
3b87138
 
 
 
 
 
68da44b
3b87138
68da44b
 
38e2f41
30dcad4
3b87138
 
 
 
 
38e2f41
68da44b
38e2f41
 
 
3b87138
 
 
 
38e2f41
68da44b
38e2f41
30dcad4
3b87138
 
38e2f41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import os
import torch
import gradio as gr
import spaces
from PIL import Image
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
import warnings
warnings.filterwarnings("ignore")

# =========================================================
# إعدادات النموذج
# =========================================================

MODEL_ID = "openbmb/MiniCPM-o-2_6"

# تحميل كسول للنموذج
model = None
tokenizer = None


def load_model():
    """تحميل النموذج عند الحاجة فقط"""
    global model, tokenizer
    
    if model is not None:
        return
    
    print(f"Loading {MODEL_ID}...")
    
    # استخدام float16 للتوافق مع ZeroGPU
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    
    try:
        # تحميل tokenizer أولاً
        tokenizer = AutoTokenizer.from_pretrained(
            MODEL_ID,
            trust_remote_code=True,
            use_fast=False
        )
        
        # تحميل النموذج مع trust_remote_code=True
        model = AutoModel.from_pretrained(
            MODEL_ID,
            trust_remote_code=True,
            torch_dtype=dtype,
            low_cpu_mem_usage=True,
            attn_implementation="eager",
        ).eval()
        
        if torch.cuda.is_available():
            model = model.cuda()
        
        print("Model loaded successfully!")
        
    except Exception as e:
        print(f"Error with AutoModel, trying AutoModelForCausalLM: {e}")
        
        # محاولة بديلة مع AutoModelForCausalLM
        try:
            model = AutoModelForCausalLM.from_pretrained(
                MODEL_ID,
                trust_remote_code=True,  # مهم جداً!
                torch_dtype=dtype,
                low_cpu_mem_usage=True,
                attn_implementation="eager"
            ).eval()
            
            if torch.cuda.is_available():
                model = model.cuda()
            
            print("Model loaded successfully with AutoModelForCausalLM!")
                
        except Exception as e2:
            print(f"Failed to load model: {e2}")
            raise RuntimeError(f"Could not load model: {e2}")


# =========================================================
# دالة معالجة الصور
# =========================================================

def process_image(image_input):
    """معالجة الصورة للنموذج"""
    if image_input is None:
        return None
    
    if isinstance(image_input, str):
        return Image.open(image_input).convert('RGB')
    else:
        return image_input.convert('RGB')


# =========================================================
# دالة الاستدلال مع ZeroGPU
# =========================================================

@spaces.GPU(duration=60)
def generate_response(
    text_input,
    image_input,
    temperature,
    top_p,
    max_new_tokens
):
    """
    معالجة النص والصور باستخدام MiniCPM-o-2_6
    """
    
    if not text_input and not image_input:
        return "Please provide text or image input."
    
    try:
        load_model()
        global model, tokenizer
        
        # إعداد المدخلات
        if image_input is not None:
            # معالجة الصورة + النص
            image = process_image(image_input)
            
            if not text_input:
                text_input = "What is shown in this image? Please describe in detail."
            
            # التحقق من وجود دالة chat في النموذج
            if hasattr(model, 'chat'):
                try:
                    # استخدام دالة chat المخصصة
                    msgs = [{"role": "user", "content": [image, text_input]}]
                    
                    with torch.no_grad():
                        response = model.chat(
                            image=image,
                            msgs=msgs,
                            tokenizer=tokenizer,
                            sampling=True,
                            temperature=temperature,
                            top_p=top_p,
                            max_new_tokens=max_new_tokens
                        )
                    
                    return response
                    
                except Exception as e:
                    print(f"Chat method failed: {e}")
                    # السقوط إلى الطريقة العادية
            
            # الطريقة البديلة للصور
            # دمج النص مع وصف الصورة
            prompt = f"Image: [Image will be processed]\n\nQuestion: {text_input}\n\nAnswer:"
            
        else:
            # نص فقط
            prompt = text_input
        
        # المعالجة العادية للنص
        inputs = tokenizer(
            prompt,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=2048
        )
        
        if torch.cuda.is_available():
            inputs = {k: v.cuda() for k, v in inputs.items() if v is not None}
        
        # إعدادات التوليد
        gen_kwargs = {
            "max_new_tokens": max_new_tokens,
            "temperature": temperature if temperature > 0 else 1e-7,
            "top_p": top_p,
            "do_sample": temperature > 0,
            "pad_token_id": tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
            "eos_token_id": tokenizer.eos_token_id,
        }
        
        # التوليد
        with torch.no_grad():
            outputs = model.generate(**inputs, **gen_kwargs)
        
        # فك التشفير
        response = tokenizer.decode(
            outputs[0][inputs['input_ids'].shape[1]:],
            skip_special_tokens=True
        )
        
        return response.strip()
        
    except Exception as e:
        import traceback
        traceback.print_exc()
        return f"Error: {str(e)}"


# =========================================================
# دوال مساعدة للواجهة
# =========================================================

def clear_all():
    """مسح جميع المدخلات والمخرجات"""
    return "", None, ""


def update_examples_visibility(show_examples):
    """تحديث رؤية الأمثلة"""
    return gr.update(visible=show_examples)


# =========================================================
# واجهة Gradio
# =========================================================

def create_demo():
    """إنشاء واجهة Gradio البسيطة"""
    
    with gr.Blocks(title="MiniCPM-o-2.6", css="""
        .gradio-container {
            max-width: 1200px;
            margin: auto;
        }
        h1 {
            text-align: center;
        }
        .contain {
            background: white;
            border-radius: 10px;
            padding: 20px;
        }
    """) as demo:
        
        gr.Markdown(
            """
            # 🤖 MiniCPM-o-2.6 - Multimodal AI Assistant
            
            <div style="text-align: center;">
                <p>
                    <b>8B parameters model</b> with GPT-4 level performance<br>
                    Supports: Text Generation, Image Understanding, OCR, and Multi-lingual conversations
                </p>
            </div>
            """
        )
        
        with gr.Row():
            # العمود الرئيسي
            with gr.Column(scale=2):
                with gr.Group():
                    text_input = gr.Textbox(
                        label="💭 Text Input",
                        placeholder="Enter your question or prompt here...\nYou can ask about images, request text generation, or have a conversation.",
                        lines=4,
                        elem_id="text_input"
                    )
                    
                    image_input = gr.Image(
                        label="📷 Image Input (Optional)",
                        type="pil",
                        elem_id="image_input"
                    )
                
                with gr.Row():
                    submit_btn = gr.Button(
                        "🚀 Generate Response",
                        variant="primary",
                        scale=2
                    )
                    clear_btn = gr.Button(
                        "🗑️ Clear All",
                        variant="secondary",
                        scale=1
                    )
                
                output = gr.Textbox(
                    label="🤖 AI Response",
                    lines=10,
                    interactive=False,
                    elem_id="output"
                )
            
            # عمود الإعدادات
            with gr.Column(scale=1):
                with gr.Group():
                    gr.Markdown("### ⚙️ Generation Settings")
                    
                    temperature = gr.Slider(
                        label="Temperature",
                        minimum=0.0,
                        maximum=1.5,
                        value=0.7,
                        step=0.1,
                        info="Controls randomness (0=deterministic, 1.5=very creative)"
                    )
                    
                    top_p = gr.Slider(
                        label="Top-p (Nucleus Sampling)",
                        minimum=0.1,
                        maximum=1.0,
                        value=0.9,
                        step=0.05,
                        info="Controls diversity of output"
                    )
                    
                    max_new_tokens = gr.Slider(
                        label="Max New Tokens",
                        minimum=50,
                        maximum=2048,
                        value=512,
                        step=50,
                        info="Maximum length of generated response"
                    )
                
                gr.Markdown(
                    """
                    ### 📚 Quick Tips:
                    
                    **Text Generation:**
                    - Ask questions
                    - Request explanations
                    - Generate creative content
                    
                    **Image Understanding:**
                    - Upload an image
                    - Ask about contents
                    - Request OCR/text extraction
                    - Get detailed descriptions
                    
                    **Languages:**
                    - English, Chinese, Arabic
                    - And many more!
                    """
                )
        
        # أمثلة
        with gr.Group():
            gr.Markdown("### 💡 Example Prompts")
            gr.Examples(
                examples=[
                    ["Explain quantum computing in simple terms for a beginner.", None],
                    ["Write a short story about a robot learning to paint.", None],
                    ["What are the main differences between Python and JavaScript?", None],
                    ["Create a healthy meal plan for one week.", None],
                    ["Translate 'Hello, how are you?' to French, Spanish, and Arabic.", None],
                ],
                inputs=[text_input, image_input],
                outputs=output,
                fn=lambda t, i: generate_response(t, i, 0.7, 0.9, 512),
                cache_examples=False,
                label="Click any example to try it"
            )
        
        # ربط الأحداث
        submit_btn.click(
            fn=generate_response,
            inputs=[text_input, image_input, temperature, top_p, max_new_tokens],
            outputs=output,
            api_name="generate"
        )
        
        text_input.submit(
            fn=generate_response,
            inputs=[text_input, image_input, temperature, top_p, max_new_tokens],
            outputs=output
        )
        
        clear_btn.click(
            fn=clear_all,
            inputs=[],
            outputs=[text_input, image_input, output]
        )
        
        # رسالة ترحيبية عند التحميل
        demo.load(
            lambda: gr.Info("Model is loading... This may take a moment on first use."),
            inputs=None,
            outputs=None
        )
    
    return demo


# =========================================================
# تشغيل التطبيق
# =========================================================

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(
        ssr_mode=False,
        show_error=True,
        share=False
    )