Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,29 +1,30 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
|
| 3 |
-
from ultralytics import YOLO
|
| 4 |
-
from base64 import b64encode
|
| 5 |
-
from speech_recognition import AudioFile, Recognizer
|
| 6 |
-
import numpy as np
|
| 7 |
from scipy.spatial import distance as dist
|
| 8 |
-
|
| 9 |
-
|
| 10 |
from fastapi import FastAPI, File, UploadFile, Form
|
| 11 |
from fastapi.responses import StreamingResponse
|
| 12 |
from fastapi.middleware.gzip import GZipMiddleware
|
| 13 |
-
|
| 14 |
-
from utils import tts, read_image_file, pil_to_base64, base64_to_pil, get_hist
|
| 15 |
-
from huggingface_hub import hf_hub_download
|
| 16 |
-
|
| 17 |
from io import BytesIO
|
|
|
|
| 18 |
import zipfile
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
model = YOLO(
|
| 22 |
-
|
| 23 |
CLASS = model.model.names
|
|
|
|
| 24 |
default_bot_voice = "おはいようございます"
|
| 25 |
area_threshold = 0.3
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
app = FastAPI()
|
| 29 |
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
|
@@ -34,15 +35,18 @@ def read_root():
|
|
| 34 |
return {"Message": "Application startup complete"}
|
| 35 |
|
| 36 |
|
| 37 |
-
@app.
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
file: UploadFile = File(...),
|
| 40 |
-
|
| 41 |
-
last_seen: Optional[str] = Form(None),
|
| 42 |
):
|
| 43 |
# parameters
|
| 44 |
total_time = time.time()
|
| 45 |
-
start_time = time.time()
|
| 46 |
most_close = 0
|
| 47 |
out_img = None
|
| 48 |
diff_value = 0.5
|
|
@@ -63,27 +67,34 @@ async def predict_api(
|
|
| 63 |
if area_rate >= most_close:
|
| 64 |
out_img = image.crop(tuple(box)).resize((64, 64))
|
| 65 |
most_close = area_rate
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# check with previous image if have
|
| 69 |
-
start_time = time.time()
|
| 70 |
if last_seen is not None:
|
| 71 |
if type(last_seen) == str:
|
| 72 |
last_seen = base64_to_pil(last_seen)
|
| 73 |
else:
|
| 74 |
last_seen = read_image_file(await last_seen.read())
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
# return results
|
| 80 |
-
start_time = time.time()
|
| 81 |
-
print(f"Distance: {most_close}. Different value: {diff_value}")
|
| 82 |
if most_close >= area_threshold and diff_value >= 0.5:
|
| 83 |
if ZIP:
|
| 84 |
-
voice_bot_path = tts(default_bot_voice, language="ja")
|
| 85 |
-
image_bot_path = pil_to_base64(out_img)
|
| 86 |
-
print("Voice time", time.time() - start_time)
|
| 87 |
io = BytesIO()
|
| 88 |
zip_filename = "final_archive.zip"
|
| 89 |
with zipfile.ZipFile(io, mode='w', compression=zipfile.ZIP_DEFLATED) as zf:
|
|
@@ -98,12 +109,43 @@ async def predict_api(
|
|
| 98 |
)
|
| 99 |
else:
|
| 100 |
voice_bot_path = tts(default_bot_voice, language="ja", encode=True)
|
| 101 |
-
image_bot_path = pil_to_base64(out_img, encode=True)
|
| 102 |
-
print("Voice time", time.time() - start_time)
|
| 103 |
print("Total time", time.time() - total_time)
|
| 104 |
return {
|
|
|
|
|
|
|
| 105 |
"voice": voice_bot_path,
|
| 106 |
"image": image_bot_path
|
| 107 |
}
|
| 108 |
else:
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ultralyticsplus import YOLO
|
| 2 |
+
from typing import Optional, Union
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from scipy.spatial import distance as dist
|
| 5 |
+
import time
|
|
|
|
| 6 |
from fastapi import FastAPI, File, UploadFile, Form
|
| 7 |
from fastapi.responses import StreamingResponse
|
| 8 |
from fastapi.middleware.gzip import GZipMiddleware
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from io import BytesIO
|
| 10 |
+
from utils import tts, stt, read_image_file, pil_to_base64, base64_to_pil, get_hist, ffmpeg_read
|
| 11 |
import zipfile
|
| 12 |
+
import soundfile as sf
|
| 13 |
+
import openai
|
| 14 |
|
| 15 |
+
# Config for camera picture
|
| 16 |
+
model = YOLO('ultralyticsplus/yolov8s')
|
|
|
|
| 17 |
CLASS = model.model.names
|
| 18 |
+
ZIP = False
|
| 19 |
default_bot_voice = "おはいようございます"
|
| 20 |
area_threshold = 0.3
|
| 21 |
+
|
| 22 |
+
# Config for human input
|
| 23 |
+
prompt_template = "私はあなたに、Detomo社が作ったロボットのように振る舞ってほしいです。あなたの名前はアイサツです。"\
|
| 24 |
+
"あなたのミッションは、子供たちが他の子供たちに挨拶する自信を持ち、幸せになることを助けることです。"\
|
| 25 |
+
"質問には簡単な方法でしか答えないようにし、明示的に要求されない限り、追加情報を提供しないでください。"
|
| 26 |
+
system_prompt = [{"role": "system", "content": prompt_template}]
|
| 27 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
| 28 |
|
| 29 |
app = FastAPI()
|
| 30 |
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
|
|
|
| 35 |
return {"Message": "Application startup complete"}
|
| 36 |
|
| 37 |
|
| 38 |
+
@app.get("/client_settings/")
|
| 39 |
+
def client_settings_api():
|
| 40 |
+
return {"camera_picture_period": 5}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@app.post("/camera_picture/")
|
| 44 |
+
async def camera_picture_api(
|
| 45 |
file: UploadFile = File(...),
|
| 46 |
+
last_seen: Optional[Union[str, UploadFile]] = Form(None),
|
|
|
|
| 47 |
):
|
| 48 |
# parameters
|
| 49 |
total_time = time.time()
|
|
|
|
| 50 |
most_close = 0
|
| 51 |
out_img = None
|
| 52 |
diff_value = 0.5
|
|
|
|
| 67 |
if area_rate >= most_close:
|
| 68 |
out_img = image.crop(tuple(box)).resize((64, 64))
|
| 69 |
most_close = area_rate
|
| 70 |
+
|
| 71 |
+
# check detect people or not
|
| 72 |
+
if out_img is None:
|
| 73 |
+
return {
|
| 74 |
+
"status": "No face detected",
|
| 75 |
+
"text": None,
|
| 76 |
+
"voice": None,
|
| 77 |
+
"image": None
|
| 78 |
+
}
|
| 79 |
+
else:
|
| 80 |
+
if ZIP:
|
| 81 |
+
image_bot_path = pil_to_base64(out_img, encode=False)
|
| 82 |
+
else:
|
| 83 |
+
image_bot_path = pil_to_base64(out_img, encode=True)
|
| 84 |
|
| 85 |
# check with previous image if have
|
|
|
|
| 86 |
if last_seen is not None:
|
| 87 |
if type(last_seen) == str:
|
| 88 |
last_seen = base64_to_pil(last_seen)
|
| 89 |
else:
|
| 90 |
last_seen = read_image_file(await last_seen.read())
|
| 91 |
+
diff_value = dist.euclidean(get_hist(out_img), get_hist(last_seen))
|
| 92 |
+
print(f"Distance: {most_close}. Different value: {diff_value}")
|
| 93 |
+
|
|
|
|
| 94 |
# return results
|
|
|
|
|
|
|
| 95 |
if most_close >= area_threshold and diff_value >= 0.5:
|
| 96 |
if ZIP:
|
| 97 |
+
voice_bot_path = tts(default_bot_voice, language="ja", encode=False)
|
|
|
|
|
|
|
| 98 |
io = BytesIO()
|
| 99 |
zip_filename = "final_archive.zip"
|
| 100 |
with zipfile.ZipFile(io, mode='w', compression=zipfile.ZIP_DEFLATED) as zf:
|
|
|
|
| 109 |
)
|
| 110 |
else:
|
| 111 |
voice_bot_path = tts(default_bot_voice, language="ja", encode=True)
|
|
|
|
|
|
|
| 112 |
print("Total time", time.time() - total_time)
|
| 113 |
return {
|
| 114 |
+
"status": "New people",
|
| 115 |
+
"text": default_bot_voice,
|
| 116 |
"voice": voice_bot_path,
|
| 117 |
"image": image_bot_path
|
| 118 |
}
|
| 119 |
else:
|
| 120 |
+
print("Total time", time.time() - total_time)
|
| 121 |
+
return {
|
| 122 |
+
"status": "Old people",
|
| 123 |
+
"text": None,
|
| 124 |
+
"voice": None,
|
| 125 |
+
"image": image_bot_path,
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
@app.post("/human_input/")
|
| 130 |
+
async def human_input_api(
|
| 131 |
+
input_data: Union[str, bytes],
|
| 132 |
+
temperature: float = 0.7,
|
| 133 |
+
max_tokens: int = 1000,
|
| 134 |
+
):
|
| 135 |
+
print("Input data type", type(input_data))
|
| 136 |
+
if type(input_data) != str:
|
| 137 |
+
upload_audio = ffmpeg_read(input_data, sampling_rate=24000)
|
| 138 |
+
sf.write('temp.wav', upload_audio, 24000, subtype='PCM_16')
|
| 139 |
+
text = stt('temp.wav')
|
| 140 |
+
else:
|
| 141 |
+
text = input_data
|
| 142 |
+
prompt_msg = {"role": "user", "content": text}
|
| 143 |
+
messages = system_prompt + [prompt_msg]
|
| 144 |
+
completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages, temperature=temperature,
|
| 145 |
+
max_tokens=max_tokens)
|
| 146 |
+
print(completion['usage']['total_tokens'])
|
| 147 |
+
return {
|
| 148 |
+
"human_text": str(text),
|
| 149 |
+
"robot_text": completion.choices[0].message.content,
|
| 150 |
+
"robot_voice": tts(completion.choices[0].message.content, language="ja", encode=True)
|
| 151 |
+
}
|