Spaces:
Runtime error
Runtime error
improving batch processing for better performance
Browse files
app.py
CHANGED
|
@@ -27,9 +27,13 @@ from transformers import pipeline
|
|
| 27 |
import re
|
| 28 |
import pymupdf
|
| 29 |
import uuid
|
|
|
|
|
|
|
|
|
|
| 30 |
print("***************************************************************")
|
| 31 |
|
| 32 |
st.set_page_config(
|
|
|
|
| 33 |
page_title="Question Generator",
|
| 34 |
initial_sidebar_state="auto",
|
| 35 |
menu_items={
|
|
@@ -38,6 +42,7 @@ st.set_page_config(
|
|
| 38 |
)
|
| 39 |
|
| 40 |
st.set_option('deprecation.showPyplotGlobalUse',False)
|
|
|
|
| 41 |
# Initialize Wikipedia API with a user agent
|
| 42 |
user_agent = 'QGen/1.0 (channingfisher7@gmail.com)'
|
| 43 |
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
|
|
@@ -87,11 +92,16 @@ def load_qa_models():
|
|
| 87 |
spell = SpellChecker()
|
| 88 |
return similarity_model, spell
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
nlp, s2v = load_nlp_models()
|
| 91 |
-
model, tokenizer = load_model('DevBM/t5-large-squad')
|
| 92 |
similarity_model, spell = load_qa_models()
|
| 93 |
context_model = similarity_model
|
| 94 |
-
|
| 95 |
# Info Section
|
| 96 |
def display_info():
|
| 97 |
st.sidebar.title("Information")
|
|
@@ -127,7 +137,7 @@ def display_info():
|
|
| 127 |
# Text Preprocessing Function
|
| 128 |
def preprocess_text(text):
|
| 129 |
# Remove newlines and extra spaces
|
| 130 |
-
text = re.sub(r'\
|
| 131 |
return text
|
| 132 |
|
| 133 |
def get_pdf_text(pdf_file):
|
|
@@ -159,11 +169,11 @@ def save_feedback(question, answer,rating):
|
|
| 159 |
# Function to clean text
|
| 160 |
def clean_text(text):
|
| 161 |
text = re.sub(r"[^\x00-\x7F]", " ", text)
|
|
|
|
| 162 |
return text
|
| 163 |
|
| 164 |
# Function to create text chunks
|
| 165 |
-
def segment_text(text, max_segment_length=
|
| 166 |
-
"""Segment the text into smaller chunks."""
|
| 167 |
sentences = sent_tokenize(text)
|
| 168 |
segments = []
|
| 169 |
current_segment = ""
|
|
@@ -177,8 +187,11 @@ def segment_text(text, max_segment_length=500):
|
|
| 177 |
|
| 178 |
if current_segment:
|
| 179 |
segments.append(current_segment.strip())
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# Function to extract keywords using combined techniques
|
| 184 |
def extract_keywords(text, extract_all):
|
|
@@ -302,14 +315,82 @@ def entity_linking(keyword):
|
|
| 302 |
return page.fullurl
|
| 303 |
return None
|
| 304 |
|
| 305 |
-
|
| 306 |
-
def generate_question(context, answer, num_beams):
|
| 307 |
input_text = f"<context> {context} <answer> {answer}"
|
|
|
|
| 308 |
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
| 309 |
-
outputs = model.generate
|
| 310 |
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 311 |
return question
|
| 312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
# Function to export questions to CSV
|
| 314 |
def export_to_csv(data):
|
| 315 |
# df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
|
|
@@ -375,6 +456,7 @@ def main():
|
|
| 375 |
st.title(":blue[Question Generator System]")
|
| 376 |
session_id = get_session_id()
|
| 377 |
state = initialize_state(session_id)
|
|
|
|
| 378 |
with st.sidebar:
|
| 379 |
show_info = st.toggle('Show Info',True)
|
| 380 |
if show_info:
|
|
@@ -382,24 +464,21 @@ def main():
|
|
| 382 |
st.subheader("Customization Options")
|
| 383 |
# Customization options
|
| 384 |
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
|
| 385 |
-
num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
|
| 386 |
-
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
| 387 |
-
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
|
| 388 |
with st.expander("Choose the Additional Elements to show"):
|
| 389 |
show_context = st.checkbox("Context",True)
|
| 390 |
show_answer = st.checkbox("Answer",True)
|
| 391 |
show_options = st.checkbox("Options",False)
|
| 392 |
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
|
| 393 |
show_qa_scores = st.checkbox("QA Score",False)
|
|
|
|
|
|
|
|
|
|
| 394 |
col1, col2 = st.columns(2)
|
| 395 |
with col1:
|
| 396 |
extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
|
| 397 |
with col2:
|
| 398 |
enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
|
| 399 |
-
|
| 400 |
-
# set_state(session_id, 'generated_questions', state['generated_questions'])
|
| 401 |
-
if use_t5_small is True:
|
| 402 |
-
model, tokenizer = load_model('AneriThakkar/flan-t5-small-finetuned')
|
| 403 |
text = None
|
| 404 |
if input_type == "Text Input":
|
| 405 |
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")
|
|
@@ -409,45 +488,19 @@ def main():
|
|
| 409 |
text = get_pdf_text(file)
|
| 410 |
if text:
|
| 411 |
text = clean_text(text)
|
| 412 |
-
segments = segment_text(text)
|
| 413 |
generate_questions_button = st.button("Generate Questions")
|
| 414 |
q_count = 0
|
| 415 |
-
if generate_questions_button:
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
print(f"\n\nFinal Keywords in Main Function: {keywords}\n\n")
|
| 421 |
-
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
|
| 422 |
-
for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
|
| 423 |
-
if i >= num_questions:
|
| 424 |
-
break
|
| 425 |
-
if q_count>num_questions:
|
| 426 |
-
break
|
| 427 |
-
question = generate_question(context, keyword, num_beams=num_beams)
|
| 428 |
-
options = generate_options(keyword,context)
|
| 429 |
-
overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context,question,keyword)
|
| 430 |
-
if overall_score < 0.5:
|
| 431 |
-
continue
|
| 432 |
-
tpl = {
|
| 433 |
-
"question" : question,
|
| 434 |
-
"context" : context,
|
| 435 |
-
"answer" : keyword,
|
| 436 |
-
"options" : options,
|
| 437 |
-
"overall_score" : overall_score,
|
| 438 |
-
"relevance_score" : relevance_score,
|
| 439 |
-
"complexity_score" : complexity_score,
|
| 440 |
-
"spelling_correctness" : spelling_correctness,
|
| 441 |
-
}
|
| 442 |
-
print("\n\n",tpl,"\n\n")
|
| 443 |
-
# st.session_state.generated_questions.append(tpl)
|
| 444 |
-
state['generated_questions'].append(tpl)
|
| 445 |
-
q_count += 1
|
| 446 |
print("\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\n")
|
| 447 |
data = get_state(session_id)
|
| 448 |
print(data)
|
|
|
|
|
|
|
| 449 |
set_state(session_id, 'generated_questions', state['generated_questions'])
|
| 450 |
-
a = get_state(session_id)
|
| 451 |
|
| 452 |
# sort question based on their quality score
|
| 453 |
state['generated_questions'] = sorted(state['generated_questions'],key = lambda x: x['overall_score'], reverse=True)
|
|
|
|
| 27 |
import re
|
| 28 |
import pymupdf
|
| 29 |
import uuid
|
| 30 |
+
import time
|
| 31 |
+
import asyncio
|
| 32 |
+
import aiohttp
|
| 33 |
print("***************************************************************")
|
| 34 |
|
| 35 |
st.set_page_config(
|
| 36 |
+
page_icon='cyclone',
|
| 37 |
page_title="Question Generator",
|
| 38 |
initial_sidebar_state="auto",
|
| 39 |
menu_items={
|
|
|
|
| 42 |
)
|
| 43 |
|
| 44 |
st.set_option('deprecation.showPyplotGlobalUse',False)
|
| 45 |
+
|
| 46 |
# Initialize Wikipedia API with a user agent
|
| 47 |
user_agent = 'QGen/1.0 (channingfisher7@gmail.com)'
|
| 48 |
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
|
|
|
|
| 92 |
spell = SpellChecker()
|
| 93 |
return similarity_model, spell
|
| 94 |
|
| 95 |
+
with st.sidebar:
|
| 96 |
+
select_model = st.selectbox("Select Model", ("T5-large","T5-small"))
|
| 97 |
+
if select_model == "T5-large":
|
| 98 |
+
modelname = "DevBM/t5-large-squad"
|
| 99 |
+
elif select_model == "T5-small":
|
| 100 |
+
modelname = "AneriThakkar/flan-t5-small-finetuned"
|
| 101 |
nlp, s2v = load_nlp_models()
|
|
|
|
| 102 |
similarity_model, spell = load_qa_models()
|
| 103 |
context_model = similarity_model
|
| 104 |
+
model, tokenizer = load_model(modelname)
|
| 105 |
# Info Section
|
| 106 |
def display_info():
|
| 107 |
st.sidebar.title("Information")
|
|
|
|
| 137 |
# Text Preprocessing Function
|
| 138 |
def preprocess_text(text):
|
| 139 |
# Remove newlines and extra spaces
|
| 140 |
+
text = re.sub(r'[\n]', ' ', text)
|
| 141 |
return text
|
| 142 |
|
| 143 |
def get_pdf_text(pdf_file):
|
|
|
|
| 169 |
# Function to clean text
|
| 170 |
def clean_text(text):
|
| 171 |
text = re.sub(r"[^\x00-\x7F]", " ", text)
|
| 172 |
+
text = re.sub(f"[\n]"," ", text)
|
| 173 |
return text
|
| 174 |
|
| 175 |
# Function to create text chunks
|
| 176 |
+
def segment_text(text, max_segment_length=700, batch_size=7):
|
|
|
|
| 177 |
sentences = sent_tokenize(text)
|
| 178 |
segments = []
|
| 179 |
current_segment = ""
|
|
|
|
| 187 |
|
| 188 |
if current_segment:
|
| 189 |
segments.append(current_segment.strip())
|
| 190 |
+
|
| 191 |
+
# Create batches
|
| 192 |
+
batches = [segments[i:i + batch_size] for i in range(0, len(segments), batch_size)]
|
| 193 |
+
return batches
|
| 194 |
+
|
| 195 |
|
| 196 |
# Function to extract keywords using combined techniques
|
| 197 |
def extract_keywords(text, extract_all):
|
|
|
|
| 315 |
return page.fullurl
|
| 316 |
return None
|
| 317 |
|
| 318 |
+
async def generate_question_async(context, answer, num_beams):
|
|
|
|
| 319 |
input_text = f"<context> {context} <answer> {answer}"
|
| 320 |
+
print(f"\n{input_text}\n")
|
| 321 |
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
| 322 |
+
outputs = await asyncio.to_thread(model.generate, input_ids, num_beams=num_beams, early_stopping=True, max_length=250)
|
| 323 |
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 324 |
+
print(f"\n{question}\n")
|
| 325 |
return question
|
| 326 |
|
| 327 |
+
async def generate_options_async(answer, context, n=3):
|
| 328 |
+
options = [answer]
|
| 329 |
+
|
| 330 |
+
# Add contextually relevant words using a pre-trained model
|
| 331 |
+
context_embedding = await asyncio.to_thread(context_model.encode, context)
|
| 332 |
+
answer_embedding = await asyncio.to_thread(context_model.encode, answer)
|
| 333 |
+
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
|
| 334 |
+
|
| 335 |
+
# Compute similarity scores and sort context words
|
| 336 |
+
similarity_scores = [util.pytorch_cos_sim(await asyncio.to_thread(context_model.encode, word), answer_embedding).item() for word in context_words]
|
| 337 |
+
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
|
| 338 |
+
options.extend(sorted_context_words[:n])
|
| 339 |
+
|
| 340 |
+
# Try to get similar words based on sense2vec
|
| 341 |
+
similar_words = await asyncio.to_thread(get_similar_words_sense2vec, answer, n)
|
| 342 |
+
options.extend(similar_words)
|
| 343 |
+
|
| 344 |
+
# If we don't have enough options, try synonyms
|
| 345 |
+
if len(options) < n + 1:
|
| 346 |
+
synonyms = await asyncio.to_thread(get_synonyms, answer, n - len(options) + 1)
|
| 347 |
+
options.extend(synonyms)
|
| 348 |
+
|
| 349 |
+
# Ensure we have the correct number of unique options
|
| 350 |
+
options = list(dict.fromkeys(options))[:n+1]
|
| 351 |
+
|
| 352 |
+
# Shuffle the options
|
| 353 |
+
random.shuffle(options)
|
| 354 |
+
|
| 355 |
+
return options
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
# Function to generate questions using beam search
|
| 359 |
+
async def generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords):
|
| 360 |
+
batches = segment_text(text)
|
| 361 |
+
keywords = extract_keywords(text, extract_all_keywords)
|
| 362 |
+
all_questions = []
|
| 363 |
+
|
| 364 |
+
for batch in batches:
|
| 365 |
+
batch_questions = await process_batch(batch, keywords, context_window_size, num_beams)
|
| 366 |
+
all_questions.extend(batch_questions)
|
| 367 |
+
if len(all_questions) >= num_questions:
|
| 368 |
+
break
|
| 369 |
+
|
| 370 |
+
return all_questions[:num_questions]
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
async def process_batch(batch, keywords, context_window_size, num_beams):
|
| 374 |
+
questions = []
|
| 375 |
+
for text in batch:
|
| 376 |
+
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
|
| 377 |
+
for keyword, context in keyword_sentence_mapping.items():
|
| 378 |
+
question = await generate_question_async(context, keyword, num_beams)
|
| 379 |
+
options = await generate_options_async(keyword, context)
|
| 380 |
+
overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context, question, keyword)
|
| 381 |
+
if overall_score >= 0.5:
|
| 382 |
+
questions.append({
|
| 383 |
+
"question": question,
|
| 384 |
+
"context": context,
|
| 385 |
+
"answer": keyword,
|
| 386 |
+
"options": options,
|
| 387 |
+
"overall_score": overall_score,
|
| 388 |
+
"relevance_score": relevance_score,
|
| 389 |
+
"complexity_score": complexity_score,
|
| 390 |
+
"spelling_correctness": spelling_correctness,
|
| 391 |
+
})
|
| 392 |
+
return questions
|
| 393 |
+
|
| 394 |
# Function to export questions to CSV
|
| 395 |
def export_to_csv(data):
|
| 396 |
# df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
|
|
|
|
| 456 |
st.title(":blue[Question Generator System]")
|
| 457 |
session_id = get_session_id()
|
| 458 |
state = initialize_state(session_id)
|
| 459 |
+
|
| 460 |
with st.sidebar:
|
| 461 |
show_info = st.toggle('Show Info',True)
|
| 462 |
if show_info:
|
|
|
|
| 464 |
st.subheader("Customization Options")
|
| 465 |
# Customization options
|
| 466 |
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
|
|
|
|
|
|
|
|
|
|
| 467 |
with st.expander("Choose the Additional Elements to show"):
|
| 468 |
show_context = st.checkbox("Context",True)
|
| 469 |
show_answer = st.checkbox("Answer",True)
|
| 470 |
show_options = st.checkbox("Options",False)
|
| 471 |
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
|
| 472 |
show_qa_scores = st.checkbox("QA Score",False)
|
| 473 |
+
num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2)
|
| 474 |
+
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
| 475 |
+
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
|
| 476 |
col1, col2 = st.columns(2)
|
| 477 |
with col1:
|
| 478 |
extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
|
| 479 |
with col2:
|
| 480 |
enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
|
| 481 |
+
|
|
|
|
|
|
|
|
|
|
| 482 |
text = None
|
| 483 |
if input_type == "Text Input":
|
| 484 |
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")
|
|
|
|
| 488 |
text = get_pdf_text(file)
|
| 489 |
if text:
|
| 490 |
text = clean_text(text)
|
|
|
|
| 491 |
generate_questions_button = st.button("Generate Questions")
|
| 492 |
q_count = 0
|
| 493 |
+
# if generate_questions_button:
|
| 494 |
+
if generate_questions_button and text:
|
| 495 |
+
start_time = time.time()
|
| 496 |
+
with st.spinner("Generating questions..."):
|
| 497 |
+
state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
print("\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\n")
|
| 499 |
data = get_state(session_id)
|
| 500 |
print(data)
|
| 501 |
+
end_time = time.time()
|
| 502 |
+
print(f"Time Taken to generate: {end_time-start_time}")
|
| 503 |
set_state(session_id, 'generated_questions', state['generated_questions'])
|
|
|
|
| 504 |
|
| 505 |
# sort question based on their quality score
|
| 506 |
state['generated_questions'] = sorted(state['generated_questions'],key = lambda x: x['overall_score'], reverse=True)
|