Spaces:
Runtime error
Runtime error
| import os | |
| from flask import Flask, request, jsonify, flash, redirect, url_for | |
| import torch | |
| import torch.nn.functional as F | |
| import torchaudio | |
| from transformers import AutoConfig, Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification, Wav2Vec2Processor, Wav2Vec2ConformerForCTC | |
| import librosa | |
| import jellyfish | |
| from werkzeug.utils import secure_filename | |
| import gradio as gr | |
| def speech_file_to_array_fn(path, sampling_rate): | |
| try: | |
| speech_array, _sampling_rate = torchaudio.load(path) | |
| resampler = torchaudio.transforms.Resample(_sampling_rate) | |
| speech = resampler(speech_array[1]).squeeze().numpy() | |
| return speech | |
| except: | |
| speech_array, _sampling_rate = torchaudio.load(path) | |
| resampler = torchaudio.transforms.Resample(_sampling_rate) | |
| speech = resampler(speech_array).squeeze().numpy() | |
| return speech | |
| def predict(path, sampling_rate, feature_extractor, device, model, config): | |
| speech = speech_file_to_array_fn(path, sampling_rate) | |
| inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) | |
| inputs = {key: inputs[key].to(device) for key in inputs} | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
| outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] | |
| return outputs | |
| def get_speech_to_text(model, processor, audio_path): | |
| data, sample_rate = librosa.load(audio_path, sr=16000) | |
| input_values = processor(data, return_tensors="pt", padding="longest").input_values | |
| logits = model(input_values).logits | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| transcription = processor.batch_decode(predicted_ids) | |
| return transcription | |
| # def get_percentage_match(transcription, text): | |
| # return jellyfish.damerau_levenshtein_distance(transcription, text) | |
| def get_sos_status(transcription, key_phrase): | |
| ct = 0 | |
| for words in key_phrase.split(" "): | |
| # print(type(words)) | |
| if transcription[0].find(words) != -1: | |
| ct = ct + 1 | |
| if ct == 3: | |
| sos = 1 | |
| else: | |
| sos = 0 | |
| return sos | |
| def main(file , micro=None): | |
| if file is not None and micro is None: | |
| audio = file | |
| elif file is None and micro is not None: | |
| audio = micro | |
| else: | |
| print("THERE IS A PROBLEM") | |
| audio = file | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| SPT_MODEL = "./SPT_model" | |
| model_name_or_path = "./SER_model" | |
| config = AutoConfig.from_pretrained(model_name_or_path) | |
| feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) | |
| sampling_rate = feature_extractor.sampling_rate | |
| model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name_or_path).to(device) | |
| processor = Wav2Vec2Processor.from_pretrained(SPT_MODEL) | |
| model_SPT = Wav2Vec2ConformerForCTC.from_pretrained(SPT_MODEL) | |
| # path = r'testing_audios\03-01-06-02-02-01-01.wav' | |
| outputs = predict(audio, sampling_rate, feature_extractor, device = device, model = model, config = config) | |
| transcription = get_speech_to_text(model_SPT, processor, audio_path=audio) | |
| key_phrase = "APPLE BRIDGE UNDER" | |
| status = get_sos_status(transcription, key_phrase) | |
| max_score = 0 | |
| emotion = "" | |
| for i in outputs: | |
| if float(i['Score'][:-1]) > max_score: | |
| max_score = float(i['Score'][:-1]) | |
| emotion = i['Emotion'] | |
| if emotion in ['disgust', 'fear', 'sadness']: | |
| emotion = 'negative' | |
| elif emotion == 'neutral': | |
| emotion = 'neutral' | |
| else: | |
| emotion = 'positive' | |
| if emotion == 'negative' or status == 1: | |
| sos = 1 | |
| else: | |
| sos = 0 | |
| return [emotion, transcription, sos] | |
| gr.Interface( | |
| fn=main, | |
| inputs=[gr.Audio(source="upload", type="filepath", label = "File"), | |
| gr.Audio(source="microphone", type="filepath", streaming=False, label = "Microphone")], | |
| outputs=[ | |
| "textbox" | |
| ], | |
| live=True).launch() |