Spaces:
Runtime error
Runtime error
Create vlm.py
Browse files
vlm.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
File: vlm.py
|
| 3 |
+
Description: Vision language model utility functions.
|
| 4 |
+
|
| 5 |
+
Heavily inspired (i.e. copied) from
|
| 6 |
+
https://huggingface.co/spaces/HuggingFaceTB/SmolVLM2/blob/main/app.py
|
| 7 |
+
|
| 8 |
+
Author: Didier Guillevic
|
| 9 |
+
Date: 2025-04-02
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 13 |
+
from transformers import TextIteratorStreamer
|
| 14 |
+
from threading import Thread
|
| 15 |
+
import re
|
| 16 |
+
import time
|
| 17 |
+
import torch
|
| 18 |
+
import spaces
|
| 19 |
+
import subprocess
|
| 20 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 21 |
+
|
| 22 |
+
from io import BytesIO
|
| 23 |
+
|
| 24 |
+
#
|
| 25 |
+
# Load the model: HuggingFaceTB/SmolVLM2-2.2B-Instruct
|
| 26 |
+
#
|
| 27 |
+
|
| 28 |
+
model_id = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
|
| 29 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 30 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 31 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
| 32 |
+
model_id,
|
| 33 |
+
_attn_implementation="flash_attention_2",
|
| 34 |
+
torch_dtype=torch.bfloat16
|
| 35 |
+
).to(device)
|
| 36 |
+
|
| 37 |
+
#
|
| 38 |
+
# Build messages
|
| 39 |
+
#
|
| 40 |
+
def build_messages(input_dict: dict, history: list[tuple]):
|
| 41 |
+
"""Build messages given message & history from a **multimodal** chat interface.
|
| 42 |
+
Args:
|
| 43 |
+
input_dict: dictionary with keys: 'text', 'files'
|
| 44 |
+
history: list of tuples with (message, response)
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
list of messages (to be sent to the model)
|
| 48 |
+
"""
|
| 49 |
+
text = input_dict["text"]
|
| 50 |
+
images = []
|
| 51 |
+
user_content = []
|
| 52 |
+
media_queue = []
|
| 53 |
+
if history == []:
|
| 54 |
+
text = input_dict["text"].strip()
|
| 55 |
+
|
| 56 |
+
for file in input_dict.get("files", []):
|
| 57 |
+
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
|
| 58 |
+
media_queue.append({"type": "image", "path": file})
|
| 59 |
+
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
|
| 60 |
+
media_queue.append({"type": "video", "path": file})
|
| 61 |
+
|
| 62 |
+
if "<image>" in text or "<video>" in text:
|
| 63 |
+
parts = re.split(r'(<image>|<video>)', text)
|
| 64 |
+
for part in parts:
|
| 65 |
+
if part == "<image>" and media_queue:
|
| 66 |
+
user_content.append(media_queue.pop(0))
|
| 67 |
+
elif part == "<video>" and media_queue:
|
| 68 |
+
user_content.append(media_queue.pop(0))
|
| 69 |
+
elif part.strip():
|
| 70 |
+
user_content.append({"type": "text", "text": part.strip()})
|
| 71 |
+
else:
|
| 72 |
+
user_content.append({"type": "text", "text": text})
|
| 73 |
+
|
| 74 |
+
for media in media_queue:
|
| 75 |
+
user_content.append(media)
|
| 76 |
+
|
| 77 |
+
resulting_messages = [{"role": "user", "content": user_content}]
|
| 78 |
+
|
| 79 |
+
elif len(history) > 0:
|
| 80 |
+
resulting_messages = []
|
| 81 |
+
user_content = []
|
| 82 |
+
media_queue = []
|
| 83 |
+
for hist in history:
|
| 84 |
+
if hist["role"] == "user" and isinstance(hist["content"], tuple):
|
| 85 |
+
file_name = hist["content"][0]
|
| 86 |
+
if file_name.endswith((".png", ".jpg", ".jpeg")):
|
| 87 |
+
media_queue.append({"type": "image", "path": file_name})
|
| 88 |
+
elif file_name.endswith(".mp4"):
|
| 89 |
+
media_queue.append({"type": "video", "path": file_name})
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
for hist in history:
|
| 93 |
+
if hist["role"] == "user" and isinstance(hist["content"], str):
|
| 94 |
+
text = hist["content"]
|
| 95 |
+
parts = re.split(r'(<image>|<video>)', text)
|
| 96 |
+
|
| 97 |
+
for part in parts:
|
| 98 |
+
if part == "<image>" and media_queue:
|
| 99 |
+
user_content.append(media_queue.pop(0))
|
| 100 |
+
elif part == "<video>" and media_queue:
|
| 101 |
+
user_content.append(media_queue.pop(0))
|
| 102 |
+
elif part.strip():
|
| 103 |
+
user_content.append({"type": "text", "text": part.strip()})
|
| 104 |
+
|
| 105 |
+
elif hist["role"] == "assistant":
|
| 106 |
+
resulting_messages.append({
|
| 107 |
+
"role": "user",
|
| 108 |
+
"content": user_content
|
| 109 |
+
})
|
| 110 |
+
resulting_messages.append({
|
| 111 |
+
"role": "assistant",
|
| 112 |
+
"content": [{"type": "text", "text": hist["content"]}]
|
| 113 |
+
})
|
| 114 |
+
user_content = []
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
if text == "" and not images:
|
| 118 |
+
gr.Error("Please input a query and optionally image(s).")
|
| 119 |
+
|
| 120 |
+
if text == "" and images:
|
| 121 |
+
gr.Error("Please input a text query along the images(s).")
|
| 122 |
+
|
| 123 |
+
return resulting_messages
|
| 124 |
+
|
| 125 |
+
#
|
| 126 |
+
# Streaming response
|
| 127 |
+
#
|
| 128 |
+
@spaces.GPU
|
| 129 |
+
@torch.inference_mode()
|
| 130 |
+
def stream_response(messages: list[dict]):
|
| 131 |
+
"""Stream the model's response to the chat interface.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
messages: list of messages to send to the model
|
| 135 |
+
"""
|
| 136 |
+
# Generate model's response
|
| 137 |
+
inputs = processor.apply_chat_template(
|
| 138 |
+
resulting_messages,
|
| 139 |
+
add_generation_prompt=True,
|
| 140 |
+
tokenize=True,
|
| 141 |
+
return_dict=True,
|
| 142 |
+
return_tensors="pt",
|
| 143 |
+
).to(model.device, dtype=torch.bfloat16)
|
| 144 |
+
|
| 145 |
+
# Generate
|
| 146 |
+
streamer = TextIteratorStreamer(
|
| 147 |
+
processor, skip_prompt=True, skip_special_tokens=True)
|
| 148 |
+
generation_args = dict(
|
| 149 |
+
inputs,
|
| 150 |
+
streamer=streamer,
|
| 151 |
+
max_new_tokens=2_048,
|
| 152 |
+
do_sample=True
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
thread = Thread(target=model.generate, kwargs=generation_args)
|
| 156 |
+
thread.start()
|
| 157 |
+
|
| 158 |
+
partial_message = ""
|
| 159 |
+
for new_text in streamer:
|
| 160 |
+
partial_message += new_text
|
| 161 |
+
yield partial_message
|