Spaces:
Runtime error
Runtime error
Muhammad Salman Akbar
commited on
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import PyPDF2
|
| 3 |
+
import re
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
| 6 |
+
from groq import Groq
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from docxtpl import DocxTemplate
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
|
| 11 |
+
# Set your API key
|
| 12 |
+
os.environ["GROQ_API_KEY"] = "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"
|
| 13 |
+
# Initialize Groq client
|
| 14 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
| 15 |
+
|
| 16 |
+
# --- Resume Extraction Functions ---
|
| 17 |
+
def extract_text_from_pdf(pdf_file_path):
|
| 18 |
+
"""Extracts text from a PDF file."""
|
| 19 |
+
with open(pdf_file_path, 'rb') as pdf_file:
|
| 20 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 21 |
+
text = ''
|
| 22 |
+
for page in range(len(pdf_reader.pages)):
|
| 23 |
+
text += pdf_reader.pages[page].extract_text()
|
| 24 |
+
return text
|
| 25 |
+
|
| 26 |
+
def extract_text_from_txt(txt_file_path):
|
| 27 |
+
"""Extracts text from a .txt file."""
|
| 28 |
+
with open(txt_file_path, 'r') as txt_file:
|
| 29 |
+
text = txt_file.read()
|
| 30 |
+
return text
|
| 31 |
+
|
| 32 |
+
# --- Skill Extraction with Llama Model ---
|
| 33 |
+
def extract_skills_llama(text):
|
| 34 |
+
"""Extracts skills from the text using the Llama model via Groq API."""
|
| 35 |
+
chat_completion = client.chat.completions.create(
|
| 36 |
+
messages=[
|
| 37 |
+
{
|
| 38 |
+
"role": "user",
|
| 39 |
+
"content": f"Extract skills from the following text: {text}",
|
| 40 |
+
}
|
| 41 |
+
],
|
| 42 |
+
model="llama3-70b-8192", # Using Llama model
|
| 43 |
+
)
|
| 44 |
+
skills = chat_completion.choices[0].message.content.split(', ') # Assuming skills are returned as a comma-separated list
|
| 45 |
+
return skills
|
| 46 |
+
|
| 47 |
+
# --- Job Description Processing ---
|
| 48 |
+
def process_job_description(job_description_text):
|
| 49 |
+
"""Processes the job description text."""
|
| 50 |
+
# 1. Preprocess the job description text
|
| 51 |
+
job_description_text = preprocess_text(job_description_text)
|
| 52 |
+
# 2. Extract skills from the job description using Llama
|
| 53 |
+
job_description_skills = extract_skills_llama(job_description_text)
|
| 54 |
+
return job_description_skills
|
| 55 |
+
|
| 56 |
+
# --- Text Preprocessing ---
|
| 57 |
+
def preprocess_text(text):
|
| 58 |
+
"""Preprocesses text for better analysis."""
|
| 59 |
+
text = text.lower() # Convert to lowercase
|
| 60 |
+
text = re.sub(r'[^\w\s]', '', text) # Remove punctuation
|
| 61 |
+
text = re.sub(r'\s+', ' ', text) # Remove extra whitespace
|
| 62 |
+
return text
|
| 63 |
+
|
| 64 |
+
# --- Resume Similarity ---
|
| 65 |
+
def calculate_resume_similarity(resume_text, job_description_text):
|
| 66 |
+
"""Calculates the similarity between the resume and job description using a Hugging Face model."""
|
| 67 |
+
model_name = "cross-encoder/stsb-roberta-base"
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 69 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 70 |
+
inputs = tokenizer(resume_text, job_description_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 71 |
+
with torch.no_grad():
|
| 72 |
+
outputs = model(**inputs)
|
| 73 |
+
similarity_score = torch.sigmoid(outputs.logits).item()
|
| 74 |
+
return similarity_score
|
| 75 |
+
|
| 76 |
+
# --- Communication Generation ---
|
| 77 |
+
def communication_generator(message, max_length=100):
|
| 78 |
+
"""Generates a communication response based on the input message using a Hugging Face model."""
|
| 79 |
+
model_name = "google/flan-t5-base"
|
| 80 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 81 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 82 |
+
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 83 |
+
response = model.generate(**inputs, max_length=max_length, num_beams=4, early_stopping=True)
|
| 84 |
+
generated_response = tokenizer.batch_decode(response, skip_special_tokens=True)[0]
|
| 85 |
+
return generated_response + " We look forward to getting in touch with you soon!"
|
| 86 |
+
|
| 87 |
+
# --- Sentiment Analysis ---
|
| 88 |
+
def sentiment_model(text):
|
| 89 |
+
"""Analyzes the sentiment of the text using a Hugging Face model."""
|
| 90 |
+
model_name = "distilbert-base-uncased-finetuned-sst-3-literal"
|
| 91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 92 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 93 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 94 |
+
with torch.no_grad():
|
| 95 |
+
outputs = model(**inputs)
|
| 96 |
+
predicted_class = torch.argmax(outputs.logits).item()
|
| 97 |
+
sentiment_labels = {0: "Negative", 1: "Neutral", 2: "Positive"}
|
| 98 |
+
return sentiment_labels[predicted_class]
|
| 99 |
+
|
| 100 |
+
# --- Placeholder Functions for Enhancement ---
|
| 101 |
+
def enhance_resume(resume_text):
|
| 102 |
+
"""Placeholder function for enhancing the resume (you can implement your own logic here)."""
|
| 103 |
+
return resume_text
|
| 104 |
+
|
| 105 |
+
def enhance_job_description(job_description_text):
|
| 106 |
+
"""Placeholder function for enhancing the job description (you can implement your own logic here)."""
|
| 107 |
+
return job_description_text
|
| 108 |
+
|
| 109 |
+
# --- Resume Analysis Function ---
|
| 110 |
+
def analyze_resume(resume_file, job_description_file):
|
| 111 |
+
"""Analyzes the resume and job description."""
|
| 112 |
+
if resume_file.name.endswith(('.pdf', '.txt')):
|
| 113 |
+
if resume_file.name.endswith('.pdf'):
|
| 114 |
+
resume_text = extract_text_from_pdf(resume_file.name)
|
| 115 |
+
else:
|
| 116 |
+
resume_text = extract_text_from_txt(resume_file.name)
|
| 117 |
+
else:
|
| 118 |
+
return "Invalid file type. Please upload a PDF or TXT file for the resume."
|
| 119 |
+
|
| 120 |
+
if job_description_file.name.endswith('.txt'):
|
| 121 |
+
job_description_text = extract_text_from_txt(job_description_file.name)
|
| 122 |
+
else:
|
| 123 |
+
return "Invalid file type. Please upload a TXT file for the job description."
|
| 124 |
+
|
| 125 |
+
job_description_skills = process_job_description(job_description_text)
|
| 126 |
+
resume_skills = extract_skills_llama(resume_text)
|
| 127 |
+
similarity_score = calculate_resume_similarity(resume_text, job_description_text)
|
| 128 |
+
communication_response = communication_generator(f"I am reviewing a resume for a {job_description_text} position. The candidate has the following skills: {', '.join(resume_skills)}")
|
| 129 |
+
sentiment = sentiment_model(resume_text)
|
| 130 |
+
enhanced_resume = enhance_resume(resume_text)
|
| 131 |
+
enhanced_job_description = enhance_job_description(job_description_text)
|
| 132 |
+
|
| 133 |
+
return (
|
| 134 |
+
f"## Resume and Job Description Analysis",
|
| 135 |
+
f"**Similarity Score:** {similarity_score:.2f}",
|
| 136 |
+
f"**Communication Response:** {communication_response}",
|
| 137 |
+
f"**Sentiment:** {sentiment}",
|
| 138 |
+
f"**Resume Skills:** {', '.join(resume_skills)}",
|
| 139 |
+
f"**Job Description Skills:** {', '.join(job_description_skills)}",
|
| 140 |
+
f"**Enhanced Resume:**\n{enhanced_resume}",
|
| 141 |
+
f"**Enhanced Job Description:**\n{enhanced_job_description}",
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# --- Offer Letter Generation ---
|
| 145 |
+
def generate_offer_letter(template_file, candidate_name, role, start_date, hours):
|
| 146 |
+
"""Generates an offer letter."""
|
| 147 |
+
# Parse the start date string
|
| 148 |
+
try:
|
| 149 |
+
start_date = datetime.strptime(start_date, "%Y-%m-%d").strftime("%B %d, %Y") # Format for DocxTemplate
|
| 150 |
+
except ValueError:
|
| 151 |
+
return "Invalid date format. Please use YYYY-MM-DD."
|
| 152 |
+
|
| 153 |
+
# Define the context variables
|
| 154 |
+
context = {
|
| 155 |
+
'candidate_name': candidate_name,
|
| 156 |
+
'role': role,
|
| 157 |
+
'start_date': start_date,
|
| 158 |
+
'hours': hours,
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
# Load the template document and render it with the context variables
|
| 162 |
+
tpl = DocxTemplate(template_file.name)
|
| 163 |
+
tpl.render(context)
|
| 164 |
+
|
| 165 |
+
# Save the generated document
|
| 166 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 167 |
+
docx_file_path = os.path.join(script_dir, f"{candidate_name}_offer_letter.docx")
|
| 168 |
+
tpl.save(docx_file_path)
|
| 169 |
+
|
| 170 |
+
# Return the file object
|
| 171 |
+
return open(docx_file_path, 'rb')
|
| 172 |
+
|
| 173 |
+
# --- Gradio Interface ---
|
| 174 |
+
demo = gr.Interface(
|
| 175 |
+
fn=analyze_resume,
|
| 176 |
+
inputs=[
|
| 177 |
+
gr.File(label="Upload Resume (PDF or TXT)"),
|
| 178 |
+
gr.File(label="Upload Job Description (TXT)"),
|
| 179 |
+
],
|
| 180 |
+
outputs=[
|
| 181 |
+
gr.Textbox(label="Similarity Score"),
|
| 182 |
+
gr.Textbox(label="Communication Response"),
|
| 183 |
+
gr.Textbox(label="Sentiment Analysis"),
|
| 184 |
+
gr.Textbox(label="Resume Skills"),
|
| 185 |
+
gr.Textbox(label="Job Description Skills"),
|
| 186 |
+
gr.Textbox(label="Enhanced Resume", lines=20),
|
| 187 |
+
gr.Textbox(label="Enhanced Job Description", lines=10),
|
| 188 |
+
],
|
| 189 |
+
title="Resume and Job Description Analyzer",
|
| 190 |
+
description="Upload your resume (PDF or TXT) and job description (TXT) to analyze their similarity, extract skills, and generate a communication response.",
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
offer_demo = gr.Interface(
|
| 194 |
+
fn=generate_offer_letter,
|
| 195 |
+
inputs=[
|
| 196 |
+
gr.File(label="Upload Offer Letter Template (DOCX)"),
|
| 197 |
+
gr.Textbox(label="Candidate Name"),
|
| 198 |
+
gr.Textbox(label="Role"),
|
| 199 |
+
gr.Textbox(label="Start Date (YYYY-MM-DD)"), # Use Textbox for date
|
| 200 |
+
gr.Number(label="Hours per Week"),
|
| 201 |
+
],
|
| 202 |
+
outputs=gr.File(label="Offer Letter"), # Change to gr.File
|
| 203 |
+
title="Offer Letter Generator",
|
| 204 |
+
description="Upload an offer letter template and enter candidate information to generate an offer letter.",
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# Combine the interfaces using a Tabbed interface
|
| 208 |
+
demo = gr.TabbedInterface(
|
| 209 |
+
[demo, offer_demo],
|
| 210 |
+
["Resume Analyzer", "Offer Letter Generator"],
|
| 211 |
+
title="HR Assistant",
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
if __name__ == '__main__':
|
| 215 |
+
demo.launch(share=True)
|