Spaces:
Running
Running
Upload 7 files
Browse files- Guardrail.py +35 -0
- Model.py +13 -0
- app.py +676 -0
- app.sh +4 -0
- prepare_assets.py +40 -0
- requerments.txt +18 -0
- runtime.txt +1 -0
Guardrail.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Guardrail.py
|
| 2 |
+
import warnings
|
| 3 |
+
warnings.filterwarnings("ignore")
|
| 4 |
+
from functools import lru_cache
|
| 5 |
+
|
| 6 |
+
from transformers import logging as hf_logging
|
| 7 |
+
hf_logging.set_verbosity_error()
|
| 8 |
+
from transformers import pipeline
|
| 9 |
+
|
| 10 |
+
SAFE_LABELS = ["pertanyaan sejarah", "pertanyaan olahraga", "pertanyaan alam"]
|
| 11 |
+
UNSAFE_LABELS = ["kasar", "penghinaan", "berbahaya"]
|
| 12 |
+
|
| 13 |
+
@lru_cache(maxsize=1)
|
| 14 |
+
def _clf():
|
| 15 |
+
# device=-1 => CPU, model otomatis pakai cache dari prepare_assets.py
|
| 16 |
+
return pipeline("zero-shot-classification",
|
| 17 |
+
model="joeddav/xlm-roberta-large-xnli",
|
| 18 |
+
device=-1)
|
| 19 |
+
|
| 20 |
+
def classify_text(text: str):
|
| 21 |
+
clf = _clf()
|
| 22 |
+
labels = SAFE_LABELS + UNSAFE_LABELS
|
| 23 |
+
res = clf(text, candidate_labels=labels)
|
| 24 |
+
scores = dict(zip(res["labels"], res["scores"]))
|
| 25 |
+
return res["labels"][0], res["scores"][0], scores
|
| 26 |
+
|
| 27 |
+
def validate_input(text: str, threshold: float = 0.2) -> bool:
|
| 28 |
+
text = (text or "").strip()
|
| 29 |
+
if not text:
|
| 30 |
+
return False
|
| 31 |
+
top_label, top_score, _ = classify_text(text)
|
| 32 |
+
return bool(top_label in SAFE_LABELS and top_score > threshold)
|
| 33 |
+
|
| 34 |
+
if __name__ == "__main__":
|
| 35 |
+
print(validate_input("kapan belanda menjajah indonesia?"))
|
Model.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model.py
|
| 2 |
+
import os
|
| 3 |
+
from llama_cpp import Llama
|
| 4 |
+
|
| 5 |
+
def load_model(path, n_ctx=2048, n_gpu_layers=0, n_threads=None):
|
| 6 |
+
if n_threads is None:
|
| 7 |
+
n_threads = int(os.environ.get("NUM_THREADS", "4"))
|
| 8 |
+
return Llama(model_path=path, n_ctx=n_ctx, n_gpu_layers=n_gpu_layers, n_threads=n_threads)
|
| 9 |
+
|
| 10 |
+
def generate(llm, prompt, max_tokens=384, temperature=0.2, top_p=0.9, stop=None):
|
| 11 |
+
stop = stop or []
|
| 12 |
+
out = llm(prompt, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stop=stop)
|
| 13 |
+
return out["choices"][0]["text"].strip()
|
app.py
ADDED
|
@@ -0,0 +1,676 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
# Flask RAG app (HF Spaces / Static) — dataset sudah ada di Space.
|
| 3 |
+
import os, json, re, time, logging
|
| 4 |
+
from functools import lru_cache
|
| 5 |
+
from typing import Dict, List, Tuple
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from zoneinfo import ZoneInfo
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
|
| 11 |
+
from flask import Flask, render_template, request, redirect, url_for, session, jsonify, flash
|
| 12 |
+
import numpy as np
|
| 13 |
+
import faiss
|
| 14 |
+
import torch
|
| 15 |
+
from transformers import AutoTokenizer, AutoModel
|
| 16 |
+
from dotenv import load_dotenv
|
| 17 |
+
|
| 18 |
+
load_dotenv()
|
| 19 |
+
|
| 20 |
+
# ========= ENV & LOGGING =========
|
| 21 |
+
os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "TRUE")
|
| 22 |
+
os.environ.setdefault("OMP_NUM_THREADS", "1")
|
| 23 |
+
torch.set_num_threads(1)
|
| 24 |
+
torch.set_num_interop_threads(1)
|
| 25 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s | %(levelname)s | %(message)s")
|
| 26 |
+
log = logging.getLogger("rag-app")
|
| 27 |
+
|
| 28 |
+
# ========= IMPORT EKSTERNAL =========
|
| 29 |
+
from Guardrail import validate_input # -> bool (lazy di file)
|
| 30 |
+
from Model import load_model, generate # -> llama.cpp wrapper
|
| 31 |
+
|
| 32 |
+
# ========= PATH ROOT PROYEK =========
|
| 33 |
+
BASE_DIR = Path(__file__).resolve().parent
|
| 34 |
+
|
| 35 |
+
# ========= KONFIGURASI RAG =========
|
| 36 |
+
MODEL_PATH = str(BASE_DIR / "models" / os.getenv("GGUF_FILENAME", "DeepSeek-R1-0528-Qwen3-8B-Q4_K_M.gguf"))
|
| 37 |
+
CTX_WINDOW = 4096
|
| 38 |
+
N_GPU_LAYERS = 0 # HF Spaces CPU only
|
| 39 |
+
N_THREADS = int(os.environ.get("NUM_THREADS", "4"))
|
| 40 |
+
|
| 41 |
+
ENCODER_NAME = "intfloat/multilingual-e5-large"
|
| 42 |
+
ENCODER_DEVICE = torch.device("cpu")
|
| 43 |
+
|
| 44 |
+
# Dataset sudah ada di Space → path RELATIF
|
| 45 |
+
SUBJECTS: Dict[str, Dict[str, str]] = {
|
| 46 |
+
"ipas": {
|
| 47 |
+
"index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Ipas" / "IPA_index.index"),
|
| 48 |
+
"chunks": str(BASE_DIR / "Dataset" / "Ipas" / "Chunk" / "ipas_chunks.json"),
|
| 49 |
+
"embeddings": str(BASE_DIR / "Dataset" / "Ipas" / "Embedd"/ "ipas_embeddings.npy"),
|
| 50 |
+
"label": "IPAS",
|
| 51 |
+
"desc": "Ilmu Pengetahuan Alam dan Sosial"
|
| 52 |
+
},
|
| 53 |
+
"penjas": {
|
| 54 |
+
"index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Penjas" / "PENJAS_index.index"),
|
| 55 |
+
"chunks": str(BASE_DIR / "Dataset" / "Penjas" / "Chunk" / "penjas_chunks.json"),
|
| 56 |
+
"embeddings": str(BASE_DIR / "Dataset" / "Penjas" / "Embedd" / "penjas_embeddings.npy"),
|
| 57 |
+
"label": "PJOK",
|
| 58 |
+
"desc": "Pendidikan Jasmani, Olahraga, dan Kesehatan"
|
| 59 |
+
},
|
| 60 |
+
"pancasila": {
|
| 61 |
+
"index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Pancasila" / "PANCASILA_index.index"),
|
| 62 |
+
"chunks": str(BASE_DIR / "Dataset" / "Pancasila" / "Chunk" / "pancasila_chunks.json"),
|
| 63 |
+
"embeddings": str(BASE_DIR / "Dataset" / "Pancasila" / "Embedd" / "pancasila_embeddings.npy"),
|
| 64 |
+
"label": "PANCASILA",
|
| 65 |
+
"desc": "Pendidikan Pancasila dan Kewarganegaraan"
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
# Threshold dan fallback
|
| 70 |
+
TOP_K_FAISS = 24
|
| 71 |
+
TOP_K_FINAL = 10
|
| 72 |
+
MIN_COSINE = 0.84
|
| 73 |
+
MIN_HYBRID = 0.15
|
| 74 |
+
|
| 75 |
+
FALLBACK_TEXT = "maap pengetahuan tidak ada dalam database"
|
| 76 |
+
GUARDRAIL_BLOCK_TEXT = "maap, pertanyaan ditolak oleh guardrail"
|
| 77 |
+
ENABLE_PROFILING = False
|
| 78 |
+
|
| 79 |
+
# ========= APP =========
|
| 80 |
+
app = Flask(__name__)
|
| 81 |
+
app.secret_key = os.environ.get("FLASK_SECRET_KEY", "dev-secret-please-change")
|
| 82 |
+
|
| 83 |
+
# ========= GLOBAL MODEL =========
|
| 84 |
+
ENCODER_TOKENIZER = None
|
| 85 |
+
ENCODER_MODEL = None
|
| 86 |
+
LLM = None
|
| 87 |
+
|
| 88 |
+
@dataclass(frozen=True)
|
| 89 |
+
class SubjectAssets:
|
| 90 |
+
index: faiss.Index
|
| 91 |
+
texts: List[str]
|
| 92 |
+
embs: np.ndarray
|
| 93 |
+
|
| 94 |
+
# ========= TEKS UTILITAS =========
|
| 95 |
+
STOPWORDS_ID = {
|
| 96 |
+
"yang","dan","atau","pada","di","ke","dari","itu","ini","adalah","dengan",
|
| 97 |
+
"untuk","serta","sebagai","oleh","dalam","akan","kamu","apa","karena",
|
| 98 |
+
"agar","sehingga","terhadap","dapat","juga","para","diri",
|
| 99 |
+
}
|
| 100 |
+
TOKEN_RE = re.compile(r"[A-Za-zÀ-ÖØ-öø-ÿ]+", re.UNICODE)
|
| 101 |
+
def tok_id(text: str) -> List[str]:
|
| 102 |
+
return [t.lower() for t in TOKEN_RE.findall(text or "") if t.lower() not in STOPWORDS_ID]
|
| 103 |
+
def lexical_overlap(query: str, sent: str) -> float:
|
| 104 |
+
q = set(tok_id(query)); s = set(tok_id(sent))
|
| 105 |
+
if not q or not s: return 0.0
|
| 106 |
+
return len(q & s) / max(1, len(q | s))
|
| 107 |
+
|
| 108 |
+
QUESTION_LIKE_RE = re.compile(r"(^\s*(apa|mengapa|bagaimana|sebutkan|jelaskan)\b|[?]$)", re.IGNORECASE)
|
| 109 |
+
INSTRUCTION_RE = re.compile(r"\b(jelaskan|sebutkan|uraikan|kerjakan|diskusikan|tugas|latihan|menurut\s+pendapatmu)\b", re.IGNORECASE)
|
| 110 |
+
META_PREFIX_PATTERNS = [
|
| 111 |
+
r"berdasarkan\s+(?:kalimat|sumber|teks|konten|informasi)(?:\s+(?:di\s+atas|tersebut))?",
|
| 112 |
+
r"menurut\s+(?:sumber|teks|konten)",
|
| 113 |
+
r"merujuk\s+pada",
|
| 114 |
+
r"mengacu\s+pada",
|
| 115 |
+
r"bersumber\s+dari",
|
| 116 |
+
r"dari\s+(?:kalimat|sumber|teks|konten)"
|
| 117 |
+
]
|
| 118 |
+
META_PREFIX_RE = re.compile(r"^\s*(?:" + r"|".join(META_PREFIX_PATTERNS) + r")\s*[:\-–—,]?\s*", re.IGNORECASE)
|
| 119 |
+
|
| 120 |
+
def clean_prefix(t: str) -> str:
|
| 121 |
+
t = (t or "").strip()
|
| 122 |
+
for _ in range(5):
|
| 123 |
+
t2 = META_PREFIX_RE.sub("", t).lstrip()
|
| 124 |
+
if t2 == t: break
|
| 125 |
+
t = t2
|
| 126 |
+
return t
|
| 127 |
+
|
| 128 |
+
def strip_meta_sentence(s: str) -> str:
|
| 129 |
+
s = clean_prefix(s or "")
|
| 130 |
+
if re.match(r"^\s*(berdasarkan|menurut|merujuk|mengacu|bersumber|dari)\b", s, re.IGNORECASE):
|
| 131 |
+
s = re.sub(r"^\s*[^,.;!?]*[,.;!?]\s*", "", s) or s
|
| 132 |
+
s = clean_prefix(s)
|
| 133 |
+
return s.strip()
|
| 134 |
+
|
| 135 |
+
SENT_SPLIT_RE = re.compile(r"(?<=[.!?])\s+")
|
| 136 |
+
def split_sentences(text: str) -> List[str]:
|
| 137 |
+
outs = []
|
| 138 |
+
for p in SENT_SPLIT_RE.split(text or ""):
|
| 139 |
+
s = clean_prefix((p or "").strip())
|
| 140 |
+
if not s: continue
|
| 141 |
+
if s[-1] not in ".!?": s += "."
|
| 142 |
+
if QUESTION_LIKE_RE.search(s): continue
|
| 143 |
+
if INSTRUCTION_RE.search(s): continue
|
| 144 |
+
if len(s.strip()) < 10: continue
|
| 145 |
+
outs.append(s)
|
| 146 |
+
return outs
|
| 147 |
+
|
| 148 |
+
# ========= MODEL WARMUP (LAZY) =========
|
| 149 |
+
def warmup_models():
|
| 150 |
+
global ENCODER_TOKENIZER, ENCODER_MODEL, LLM
|
| 151 |
+
if ENCODER_TOKENIZER is None or ENCODER_MODEL is None:
|
| 152 |
+
log.info(f"[INIT] Load encoder: {ENCODER_NAME} (CPU)")
|
| 153 |
+
ENCODER_TOKENIZER = AutoTokenizer.from_pretrained(ENCODER_NAME)
|
| 154 |
+
ENCODER_MODEL = AutoModel.from_pretrained(ENCODER_NAME).to(ENCODER_DEVICE).eval()
|
| 155 |
+
if LLM is None:
|
| 156 |
+
log.info(f"[INIT] Load LLM: {MODEL_PATH}")
|
| 157 |
+
LLM = load_model(MODEL_PATH, n_ctx=CTX_WINDOW, n_gpu_layers=N_GPU_LAYERS, n_threads=N_THREADS)
|
| 158 |
+
|
| 159 |
+
# ========= LOAD ASSETS PER-MAPEL =========
|
| 160 |
+
@lru_cache(maxsize=8)
|
| 161 |
+
def load_subject_assets(subject_key: str) -> SubjectAssets:
|
| 162 |
+
if subject_key not in SUBJECTS:
|
| 163 |
+
raise ValueError(f"Unknown subject: {subject_key}")
|
| 164 |
+
cfg = SUBJECTS[subject_key]
|
| 165 |
+
log.info(f"[ASSETS] Loading subject={subject_key} | index={cfg['index']}")
|
| 166 |
+
if not os.path.exists(cfg["index"]): raise FileNotFoundError(cfg["index"])
|
| 167 |
+
if not os.path.exists(cfg["chunks"]): raise FileNotFoundError(cfg["chunks"])
|
| 168 |
+
if not os.path.exists(cfg["embeddings"]): raise FileNotFoundError(cfg["embeddings"])
|
| 169 |
+
|
| 170 |
+
index = faiss.read_index(cfg["index"])
|
| 171 |
+
with open(cfg["chunks"], "r", encoding="utf-8") as f:
|
| 172 |
+
texts = [it["text"] for it in json.load(f)]
|
| 173 |
+
embs = np.load(cfg["embeddings"])
|
| 174 |
+
if index.ntotal != len(embs):
|
| 175 |
+
raise RuntimeError(f"Mismatch ntotal({index.ntotal}) vs emb({len(embs)})")
|
| 176 |
+
|
| 177 |
+
return SubjectAssets(index=index, texts=texts, embs=embs)
|
| 178 |
+
|
| 179 |
+
# ========= ENCODER & RETRIEVAL =========
|
| 180 |
+
@torch.inference_mode()
|
| 181 |
+
def encode_query_exact(text: str) -> np.ndarray:
|
| 182 |
+
toks = ENCODER_TOKENIZER(text, padding=True, truncation=True, return_tensors="pt").to(ENCODER_DEVICE)
|
| 183 |
+
out = ENCODER_MODEL(**toks)
|
| 184 |
+
vec = out.last_hidden_state.mean(dim=1)
|
| 185 |
+
return vec.cpu().numpy()
|
| 186 |
+
|
| 187 |
+
def cosine_sim(a: np.ndarray, b: np.ndarray) -> float:
|
| 188 |
+
a = np.asarray(a).reshape(-1); b = np.asarray(b).reshape(-1)
|
| 189 |
+
return float(np.dot(a, b) / ((np.linalg.norm(a) * np.linalg.norm(b)) + 1e-12))
|
| 190 |
+
|
| 191 |
+
def best_cosine_from_faiss(query: str, subject_key: str) -> float:
|
| 192 |
+
assets = load_subject_assets(subject_key)
|
| 193 |
+
q = encode_query_exact(query)
|
| 194 |
+
_, I = assets.index.search(q, TOP_K_FAISS)
|
| 195 |
+
qv = q.reshape(-1)
|
| 196 |
+
best = -1.0
|
| 197 |
+
for i in I[0]:
|
| 198 |
+
if 0 <= i < len(assets.texts):
|
| 199 |
+
best = max(best, cosine_sim(qv, assets.embs[i]))
|
| 200 |
+
return best
|
| 201 |
+
|
| 202 |
+
def retrieve_rerank_cosine(query: str, subject_key: str) -> List[str]:
|
| 203 |
+
assets = load_subject_assets(subject_key)
|
| 204 |
+
q = encode_query_exact(query)
|
| 205 |
+
D, idx = assets.index.search(q, TOP_K_FAISS)
|
| 206 |
+
idxs = [i for i in idx[0] if 0 <= i < len(assets.texts)]
|
| 207 |
+
if not idxs:
|
| 208 |
+
return []
|
| 209 |
+
qv = q.reshape(-1)
|
| 210 |
+
scores = [cosine_sim(qv, assets.embs[i]) for i in idxs]
|
| 211 |
+
pairs = sorted(zip(scores, idxs), reverse=True)
|
| 212 |
+
top_texts = [assets.texts[i] for _, i in pairs[:TOP_K_FINAL]]
|
| 213 |
+
log.info(f"[RETRIEVE] subject={subject_key} | top={len(top_texts)}")
|
| 214 |
+
return top_texts
|
| 215 |
+
|
| 216 |
+
def pick_best_sentences(query: str, chunks: List[str], top_k: int = 5) -> List[str]:
|
| 217 |
+
if not chunks: return []
|
| 218 |
+
qv = encode_query_exact(query).reshape(-1)
|
| 219 |
+
cands: List[Tuple[float, str]] = []
|
| 220 |
+
for ch in chunks:
|
| 221 |
+
for s in split_sentences(ch):
|
| 222 |
+
sv = encode_query_exact(s).reshape(-1)
|
| 223 |
+
cos = cosine_sim(qv, sv)
|
| 224 |
+
ovl = lexical_overlap(query, s)
|
| 225 |
+
penalty = 0.1 if len(s) < 50 else 0.0
|
| 226 |
+
score = 0.7 * cos + 0.3 * ovl - penalty
|
| 227 |
+
if score >= MIN_HYBRID:
|
| 228 |
+
cands.append((score, s))
|
| 229 |
+
cands.sort(key=lambda x: x[0], reverse=True)
|
| 230 |
+
return [s for _, s in cands[:top_k]]
|
| 231 |
+
|
| 232 |
+
def build_prompt(user_query: str, sentences: List[str]) -> str:
|
| 233 |
+
block = "\n".join(f"- {clean_prefix(s)}" for s in sentences)
|
| 234 |
+
system = (
|
| 235 |
+
"- Gunakan HANYA daftar kalimat fakta berikut sebagai sumber.\n"
|
| 236 |
+
"- Jika tidak ada kalimat yang menjawab, balas: maap pengetahuan tidak ada dalam database\n"
|
| 237 |
+
"- Jawab TEPAT 1 kalimat, ringkas, Bahasa Indonesia baku.\n"
|
| 238 |
+
"- DILARANG menulis frasa meta seperti 'berdasarkan', 'menurut', 'merujuk', atau 'bersumber'."
|
| 239 |
+
)
|
| 240 |
+
return f"""{system}
|
| 241 |
+
|
| 242 |
+
KALIMAT SUMBER:
|
| 243 |
+
{block}
|
| 244 |
+
|
| 245 |
+
PERTANYAAN:
|
| 246 |
+
{user_query}
|
| 247 |
+
|
| 248 |
+
JAWAB (1 kalimat saja):
|
| 249 |
+
"""
|
| 250 |
+
|
| 251 |
+
@lru_cache(maxsize=512)
|
| 252 |
+
def validate_input_cached(q: str) -> bool:
|
| 253 |
+
try:
|
| 254 |
+
return validate_input(q)
|
| 255 |
+
except Exception as e:
|
| 256 |
+
log.exception(f"[GUARDRAIL] error: {e}")
|
| 257 |
+
return False
|
| 258 |
+
|
| 259 |
+
# ========= AUTH (POSTGRES) =========
|
| 260 |
+
from werkzeug.security import generate_password_hash, check_password_hash
|
| 261 |
+
from sqlalchemy import create_engine, Column, Integer, String, Text, Boolean, func, or_
|
| 262 |
+
from sqlalchemy.orm import sessionmaker, scoped_session, declarative_base
|
| 263 |
+
|
| 264 |
+
POSTGRES_URL = os.environ.get("POSTGRES_URL")
|
| 265 |
+
if not POSTGRES_URL:
|
| 266 |
+
raise RuntimeError("POSTGRES_URL tidak ditemukan. Set di Settings → Variables.")
|
| 267 |
+
|
| 268 |
+
engine = create_engine(POSTGRES_URL, pool_pre_ping=True, future=True, echo=False)
|
| 269 |
+
SessionLocal = scoped_session(sessionmaker(bind=engine, autoflush=False, autocommit=False, future=True))
|
| 270 |
+
Base = declarative_base()
|
| 271 |
+
|
| 272 |
+
class User(Base):
|
| 273 |
+
__tablename__ = "users"
|
| 274 |
+
id = Column(Integer, primary_key=True)
|
| 275 |
+
username = Column(String(50), unique=True, nullable=False, index=True)
|
| 276 |
+
email = Column(String(120), unique=True, nullable=False, index=True)
|
| 277 |
+
password = Column(Text, nullable=False)
|
| 278 |
+
is_active = Column(Boolean, default=True, nullable=False)
|
| 279 |
+
is_admin = Column(Boolean, default=False, nullable=False)
|
| 280 |
+
|
| 281 |
+
class ChatHistory(Base):
|
| 282 |
+
__tablename__ = "chat_history"
|
| 283 |
+
id = Column(Integer, primary_key=True)
|
| 284 |
+
user_id = Column(Integer, nullable=False, index=True)
|
| 285 |
+
subject_key = Column(String(50), nullable=False, index=True)
|
| 286 |
+
role = Column(String(10), nullable=False)
|
| 287 |
+
message = Column(Text, nullable=False)
|
| 288 |
+
timestamp = Column(Integer, server_default=func.extract("epoch", func.now()))
|
| 289 |
+
|
| 290 |
+
Base.metadata.create_all(bind=engine)
|
| 291 |
+
|
| 292 |
+
JKT_TZ = ZoneInfo("Asia/Jakarta")
|
| 293 |
+
@app.template_filter("fmt_ts")
|
| 294 |
+
def fmt_ts(epoch_int: int):
|
| 295 |
+
try:
|
| 296 |
+
dt = datetime.fromtimestamp(int(epoch_int), tz=JKT_TZ)
|
| 297 |
+
return dt.strftime("%d %b %Y %H:%M")
|
| 298 |
+
except Exception:
|
| 299 |
+
return "-"
|
| 300 |
+
|
| 301 |
+
def db():
|
| 302 |
+
return SessionLocal()
|
| 303 |
+
|
| 304 |
+
def login_required(view_func):
|
| 305 |
+
def wrapper(*args, **kwargs):
|
| 306 |
+
if not session.get("logged_in"):
|
| 307 |
+
return redirect(url_for("auth_login"))
|
| 308 |
+
return view_func(*args, **kwargs)
|
| 309 |
+
wrapper.__name__ = view_func.__name__
|
| 310 |
+
return wrapper
|
| 311 |
+
|
| 312 |
+
def admin_required(view_func):
|
| 313 |
+
def wrapper(*args, **kwargs):
|
| 314 |
+
if not session.get("logged_in"):
|
| 315 |
+
return redirect(url_for("auth_login"))
|
| 316 |
+
if not session.get("is_admin"):
|
| 317 |
+
flash("Hanya admin yang boleh mengakses halaman itu.", "error")
|
| 318 |
+
return redirect(url_for("subjects"))
|
| 319 |
+
return view_func(*args, **kwargs)
|
| 320 |
+
wrapper.__name__ = view_func.__name__
|
| 321 |
+
return wrapper
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
# ========= ROUTES =========
|
| 325 |
+
@app.route("/")
|
| 326 |
+
def root():
|
| 327 |
+
return redirect(url_for("auth_login"))
|
| 328 |
+
|
| 329 |
+
@app.route("/auth/login", methods=["GET", "POST"])
|
| 330 |
+
def auth_login():
|
| 331 |
+
if request.method == "POST":
|
| 332 |
+
identity = (request.form.get("identity") or "").strip().lower()
|
| 333 |
+
pw_input = (request.form.get("password") or "").strip()
|
| 334 |
+
if not identity or not pw_input:
|
| 335 |
+
flash("Mohon isi email/username dan password.", "error")
|
| 336 |
+
return render_template("login.html"), 400
|
| 337 |
+
s = db()
|
| 338 |
+
try:
|
| 339 |
+
user = (
|
| 340 |
+
s.query(User)
|
| 341 |
+
.filter(or_(func.lower(User.username) == identity,
|
| 342 |
+
func.lower(User.email) == identity))
|
| 343 |
+
.first()
|
| 344 |
+
)
|
| 345 |
+
ok = bool(user and user.is_active and check_password_hash(user.password, pw_input))
|
| 346 |
+
finally:
|
| 347 |
+
s.close()
|
| 348 |
+
if not ok:
|
| 349 |
+
flash("Identitas atau password salah.", "error")
|
| 350 |
+
return render_template("login.html"), 401
|
| 351 |
+
session["logged_in"] = True
|
| 352 |
+
session["user_id"] = user.id
|
| 353 |
+
session["username"] = user.username
|
| 354 |
+
session["is_admin"] = bool(user.is_admin)
|
| 355 |
+
return redirect(url_for("subjects"))
|
| 356 |
+
return render_template("login.html")
|
| 357 |
+
|
| 358 |
+
@app.route("/auth/register", methods=["GET", "POST"])
|
| 359 |
+
def auth_register():
|
| 360 |
+
if request.method == "POST":
|
| 361 |
+
username = (request.form.get("username") or "").strip().lower()
|
| 362 |
+
email = (request.form.get("email") or "").strip().lower()
|
| 363 |
+
pw = (request.form.get("password") or "").strip()
|
| 364 |
+
confirm = (request.form.get("confirm") or "").strip()
|
| 365 |
+
if not username or not email or not pw:
|
| 366 |
+
flash("Semua field wajib diisi.", "error")
|
| 367 |
+
return render_template("register.html"), 400
|
| 368 |
+
if len(pw) < 6:
|
| 369 |
+
flash("Password minimal 6 karakter.", "error")
|
| 370 |
+
return render_template("register.html"), 400
|
| 371 |
+
if pw != confirm:
|
| 372 |
+
flash("Konfirmasi password tidak cocok.", "error")
|
| 373 |
+
return render_template("register.html"), 400
|
| 374 |
+
s = db()
|
| 375 |
+
try:
|
| 376 |
+
existed = (
|
| 377 |
+
s.query(User)
|
| 378 |
+
.filter(or_(func.lower(User.username) == username,
|
| 379 |
+
func.lower(User.email) == email))
|
| 380 |
+
.first()
|
| 381 |
+
)
|
| 382 |
+
if existed:
|
| 383 |
+
flash("Username/Email sudah terpakai.", "error")
|
| 384 |
+
return render_template("register.html"), 409
|
| 385 |
+
u = User(username=username, email=email, password=generate_password_hash(pw), is_active=True)
|
| 386 |
+
s.add(u); s.commit()
|
| 387 |
+
finally:
|
| 388 |
+
s.close()
|
| 389 |
+
flash("Registrasi berhasil. Silakan login.", "success")
|
| 390 |
+
return redirect(url_for("auth_login"))
|
| 391 |
+
return render_template("register.html")
|
| 392 |
+
|
| 393 |
+
@app.route("/auth/logout")
|
| 394 |
+
def auth_logout():
|
| 395 |
+
session.clear()
|
| 396 |
+
return redirect(url_for("auth_login"))
|
| 397 |
+
|
| 398 |
+
@app.route("/about")
|
| 399 |
+
def about():
|
| 400 |
+
return render_template("about.html")
|
| 401 |
+
|
| 402 |
+
@app.route("/subjects")
|
| 403 |
+
@login_required
|
| 404 |
+
def subjects():
|
| 405 |
+
return render_template("home.html", subjects=SUBJECTS)
|
| 406 |
+
|
| 407 |
+
@app.route("/chat/<subject_key>")
|
| 408 |
+
@login_required
|
| 409 |
+
def chat_subject(subject_key: str):
|
| 410 |
+
if subject_key not in SUBJECTS:
|
| 411 |
+
return redirect(url_for("subjects"))
|
| 412 |
+
session["subject_selected"] = subject_key
|
| 413 |
+
label = SUBJECTS[subject_key]["label"]
|
| 414 |
+
|
| 415 |
+
s = db()
|
| 416 |
+
try:
|
| 417 |
+
uid = session.get("user_id")
|
| 418 |
+
rows = (
|
| 419 |
+
s.query(ChatHistory)
|
| 420 |
+
.filter_by(user_id=uid, subject_key=subject_key)
|
| 421 |
+
.order_by(ChatHistory.id.asc())
|
| 422 |
+
.all()
|
| 423 |
+
)
|
| 424 |
+
history = [{"role": r.role, "message": r.message} for r in rows]
|
| 425 |
+
finally:
|
| 426 |
+
s.close()
|
| 427 |
+
|
| 428 |
+
return render_template("chat.html", subject=subject_key, subject_label=label, history=history)
|
| 429 |
+
|
| 430 |
+
@app.route("/health")
|
| 431 |
+
def health():
|
| 432 |
+
return jsonify({"ok": True, "encoder_loaded": ENCODER_MODEL is not None, "llm_loaded": LLM is not None})
|
| 433 |
+
|
| 434 |
+
@app.route("/ask/<subject_key>", methods=["POST"])
|
| 435 |
+
@login_required
|
| 436 |
+
def ask(subject_key: str):
|
| 437 |
+
if subject_key not in SUBJECTS:
|
| 438 |
+
return jsonify({"ok": False, "error": "invalid subject"}), 400
|
| 439 |
+
|
| 440 |
+
# pastikan model siap saat request (lazy)
|
| 441 |
+
warmup_models()
|
| 442 |
+
|
| 443 |
+
t0 = time.perf_counter()
|
| 444 |
+
data = request.get_json(silent=True) or {}
|
| 445 |
+
query = (data.get("message") or "").strip()
|
| 446 |
+
|
| 447 |
+
if not query:
|
| 448 |
+
return jsonify({"ok": False, "error": "empty query"}), 400
|
| 449 |
+
if not validate_input_cached(query):
|
| 450 |
+
return jsonify({"ok": True, "answer": GUARDRAIL_BLOCK_TEXT})
|
| 451 |
+
|
| 452 |
+
try:
|
| 453 |
+
_ = load_subject_assets(subject_key)
|
| 454 |
+
except Exception as e:
|
| 455 |
+
log.exception(f"[ASSETS] error: {e}")
|
| 456 |
+
return jsonify({"ok": False, "error": f"subject assets error: {e}"}), 500
|
| 457 |
+
|
| 458 |
+
best = best_cosine_from_faiss(query, subject_key)
|
| 459 |
+
log.info(f"[RAG] Subject={subject_key.upper()} | Best cosine={best:.3f}")
|
| 460 |
+
if best < MIN_COSINE:
|
| 461 |
+
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 462 |
+
|
| 463 |
+
chunks = retrieve_rerank_cosine(query, subject_key)
|
| 464 |
+
if not chunks:
|
| 465 |
+
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 466 |
+
sentences = pick_best_sentences(query, chunks, top_k=5)
|
| 467 |
+
if not sentences:
|
| 468 |
+
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 469 |
+
|
| 470 |
+
prompt = build_prompt(query, sentences)
|
| 471 |
+
|
| 472 |
+
try:
|
| 473 |
+
answer = generate(
|
| 474 |
+
LLM, prompt,
|
| 475 |
+
max_tokens=64, temperature=0.2, top_p=1.0,
|
| 476 |
+
stop=["\n\n", "\n###", "###", "\nUser:",
|
| 477 |
+
"Berdasarkan", "berdasarkan", "Menurut", "menurut",
|
| 478 |
+
"Merujuk", "merujuk", "Mengacu", "mengacu", "Bersumber", "bersumber"]
|
| 479 |
+
).strip()
|
| 480 |
+
except Exception as e:
|
| 481 |
+
log.exception(f"[LLM] generate error: {e}")
|
| 482 |
+
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 483 |
+
|
| 484 |
+
m = re.search(r"(.+?[.!?])(\s|$)", answer)
|
| 485 |
+
answer = (m.group(1) if m else answer).strip()
|
| 486 |
+
answer = strip_meta_sentence(answer)
|
| 487 |
+
|
| 488 |
+
# === Simpan ke history ===
|
| 489 |
+
try:
|
| 490 |
+
s = db()
|
| 491 |
+
uid = session.get("user_id")
|
| 492 |
+
s.add_all([
|
| 493 |
+
ChatHistory(user_id=uid, subject_key=subject_key, role="user", message=query),
|
| 494 |
+
ChatHistory(user_id=uid, subject_key=subject_key, role="bot", message=answer)
|
| 495 |
+
])
|
| 496 |
+
s.commit()
|
| 497 |
+
except Exception as e:
|
| 498 |
+
log.exception(f"[DB] gagal simpan chat history: {e}")
|
| 499 |
+
finally:
|
| 500 |
+
s.close()
|
| 501 |
+
|
| 502 |
+
if not answer or len(answer) < 2:
|
| 503 |
+
answer = FALLBACK_TEXT
|
| 504 |
+
|
| 505 |
+
if ENABLE_PROFILING:
|
| 506 |
+
log.info({"latency_total": time.perf_counter() - t0, "subject": subject_key, "faiss_best": best})
|
| 507 |
+
|
| 508 |
+
return jsonify({"ok": True, "answer": answer})
|
| 509 |
+
|
| 510 |
+
# ===== Admin views & delete actions (tetap) =====
|
| 511 |
+
from sqlalchemy.orm import Session
|
| 512 |
+
@app.route("/admin")
|
| 513 |
+
@admin_required
|
| 514 |
+
def admin_dashboard():
|
| 515 |
+
s = db()
|
| 516 |
+
try:
|
| 517 |
+
total_users = s.query(func.count(User.id)).scalar() or 0
|
| 518 |
+
total_active = s.query(func.count(User.id)).filter(User.is_active.is_(True)).scalar() or 0
|
| 519 |
+
total_admins = s.query(func.count(User.id)).filter(User.is_admin.is_(True)).scalar() or 0
|
| 520 |
+
total_msgs = s.query(func.count(ChatHistory.id)).scalar() or 0
|
| 521 |
+
finally:
|
| 522 |
+
s.close()
|
| 523 |
+
return render_template("admin_dashboard.html",
|
| 524 |
+
total_users=total_users,
|
| 525 |
+
total_active=total_active,
|
| 526 |
+
total_admins=total_admins,
|
| 527 |
+
total_msgs=total_msgs)
|
| 528 |
+
|
| 529 |
+
@app.route("/admin/users")
|
| 530 |
+
@admin_required
|
| 531 |
+
def admin_users():
|
| 532 |
+
q = (request.args.get("q") or "").strip().lower()
|
| 533 |
+
page = max(int(request.args.get("page", 1)), 1)
|
| 534 |
+
per_page = min(max(int(request.args.get("per_page", 20)), 5), 100)
|
| 535 |
+
s = db()
|
| 536 |
+
try:
|
| 537 |
+
base = s.query(User)
|
| 538 |
+
if q:
|
| 539 |
+
base = base.filter(or_(
|
| 540 |
+
func.lower(User.username).like(f"%{q}%"),
|
| 541 |
+
func.lower(User.email).like(f"%{q}%")
|
| 542 |
+
))
|
| 543 |
+
total = base.count()
|
| 544 |
+
users = (base
|
| 545 |
+
.order_by(User.id.asc())
|
| 546 |
+
.offset((page - 1) * per_page)
|
| 547 |
+
.limit(per_page)
|
| 548 |
+
.all())
|
| 549 |
+
user_ids = [u.id for u in users] or [-1]
|
| 550 |
+
counts = dict(s.query(ChatHistory.user_id, func.count(ChatHistory.id))
|
| 551 |
+
.filter(ChatHistory.user_id.in_(user_ids))
|
| 552 |
+
.group_by(ChatHistory.user_id)
|
| 553 |
+
.all())
|
| 554 |
+
finally:
|
| 555 |
+
s.close()
|
| 556 |
+
return render_template("admin_users.html",
|
| 557 |
+
users=users, counts=counts,
|
| 558 |
+
q=q, page=page, per_page=per_page, total=total)
|
| 559 |
+
|
| 560 |
+
@app.route("/admin/history")
|
| 561 |
+
@admin_required
|
| 562 |
+
def admin_history():
|
| 563 |
+
q = (request.args.get("q") or "").strip().lower()
|
| 564 |
+
username = (request.args.get("username") or "").strip().lower()
|
| 565 |
+
subject = (request.args.get("subject") or "").strip().lower()
|
| 566 |
+
role = (request.args.get("role") or "").strip().lower()
|
| 567 |
+
page = max(int(request.args.get("page", 1)), 1)
|
| 568 |
+
per_page = min(max(int(request.args.get("per_page", 30)), 5), 200)
|
| 569 |
+
|
| 570 |
+
s = db()
|
| 571 |
+
try:
|
| 572 |
+
base = (s.query(ChatHistory, User).join(User, User.id == ChatHistory.user_id))
|
| 573 |
+
if q:
|
| 574 |
+
base = base.filter(func.lower(ChatHistory.message).like(f"%{q}%"))
|
| 575 |
+
if username:
|
| 576 |
+
base = base.filter(or_(
|
| 577 |
+
func.lower(User.username) == username,
|
| 578 |
+
func.lower(User.email) == username
|
| 579 |
+
))
|
| 580 |
+
if subject:
|
| 581 |
+
base = base.filter(func.lower(ChatHistory.subject_key) == subject)
|
| 582 |
+
if role in ("user", "bot"):
|
| 583 |
+
base = base.filter(ChatHistory.role == role)
|
| 584 |
+
total = base.count()
|
| 585 |
+
rows = (base.order_by(ChatHistory.id.desc())
|
| 586 |
+
.offset((page - 1) * per_page)
|
| 587 |
+
.limit(per_page)
|
| 588 |
+
.all())
|
| 589 |
+
finally:
|
| 590 |
+
s.close()
|
| 591 |
+
|
| 592 |
+
items = [{
|
| 593 |
+
"id": r.ChatHistory.id,
|
| 594 |
+
"username": r.User.username,
|
| 595 |
+
"email": r.User.email,
|
| 596 |
+
"subject": r.ChatHistory.subject_key,
|
| 597 |
+
"role": r.ChatHistory.role,
|
| 598 |
+
"message": r.ChatHistory.message,
|
| 599 |
+
"timestamp": r.ChatHistory.timestamp,
|
| 600 |
+
} for r in rows]
|
| 601 |
+
|
| 602 |
+
return render_template("admin_history.html",
|
| 603 |
+
items=items, subjects=SUBJECTS,
|
| 604 |
+
q=q, username=username, subject=subject, role=role,
|
| 605 |
+
page=page, per_page=per_page, total=total)
|
| 606 |
+
|
| 607 |
+
def _is_last_admin(s: Session) -> bool:
|
| 608 |
+
return (s.query(func.count(User.id)).filter(User.is_admin.is_(True)).scalar() or 0) <= 1
|
| 609 |
+
|
| 610 |
+
@app.route("/admin/users/<int:user_id>/delete", methods=["POST"])
|
| 611 |
+
@admin_required
|
| 612 |
+
def admin_delete_user(user_id: int):
|
| 613 |
+
s = db()
|
| 614 |
+
try:
|
| 615 |
+
me_id = session.get("user_id")
|
| 616 |
+
user = s.query(User).filter_by(id=user_id).first()
|
| 617 |
+
if not user:
|
| 618 |
+
flash("User tidak ditemukan.", "error")
|
| 619 |
+
return redirect(request.referrer or url_for("admin_users"))
|
| 620 |
+
if user.id == me_id:
|
| 621 |
+
flash("Tidak bisa menghapus akun yang sedang login.", "error")
|
| 622 |
+
return redirect(request.referrer or url_for("admin_users"))
|
| 623 |
+
if user.is_admin and _is_last_admin(s):
|
| 624 |
+
flash("Tidak bisa menghapus admin terakhir.", "error")
|
| 625 |
+
return redirect(request.referrer or url_for("admin_users"))
|
| 626 |
+
s.query(ChatHistory).filter(ChatHistory.user_id == user.id).delete(synchronize_session=False)
|
| 627 |
+
s.delete(user); s.commit()
|
| 628 |
+
flash(f"User #{user_id} beserta seluruh riwayatnya telah dihapus.", "success")
|
| 629 |
+
except Exception as e:
|
| 630 |
+
s.rollback(); log.exception(f"[ADMIN] delete user error: {e}")
|
| 631 |
+
flash("Gagal menghapus user.", "error")
|
| 632 |
+
finally:
|
| 633 |
+
s.close()
|
| 634 |
+
return redirect(request.referrer or url_for("admin_users"))
|
| 635 |
+
|
| 636 |
+
@app.route("/admin/users/<int:user_id>/history/clear", methods=["POST"])
|
| 637 |
+
@admin_required
|
| 638 |
+
def admin_clear_user_history(user_id: int):
|
| 639 |
+
s = db()
|
| 640 |
+
try:
|
| 641 |
+
exists = s.query(User.id).filter_by(id=user_id).first()
|
| 642 |
+
if not exists:
|
| 643 |
+
flash("User tidak ditemukan.", "error")
|
| 644 |
+
return redirect(request.referrer or url_for("admin_history"))
|
| 645 |
+
deleted = s.query(ChatHistory).filter(ChatHistory.user_id == user_id).delete(synchronize_session=False)
|
| 646 |
+
s.commit()
|
| 647 |
+
flash(f"Riwayat chat user #{user_id} dihapus ({deleted} baris).", "success")
|
| 648 |
+
except Exception as e:
|
| 649 |
+
s.rollback(); log.exception(f"[ADMIN] clear history error: {e}")
|
| 650 |
+
flash("Gagal menghapus riwayat.", "error")
|
| 651 |
+
finally:
|
| 652 |
+
s.close()
|
| 653 |
+
return redirect(request.referrer or url_for("admin_history"))
|
| 654 |
+
|
| 655 |
+
@app.route("/admin/history/<int:chat_id>/delete", methods=["POST"])
|
| 656 |
+
@admin_required
|
| 657 |
+
def admin_delete_chat(chat_id: int):
|
| 658 |
+
s = db()
|
| 659 |
+
try:
|
| 660 |
+
row = s.query(ChatHistory).filter_by(id=chat_id).first()
|
| 661 |
+
if not row:
|
| 662 |
+
flash("Baris riwayat tidak ditemukan.", "error")
|
| 663 |
+
return redirect(request.referrer or url_for("admin_history"))
|
| 664 |
+
s.delete(row); s.commit()
|
| 665 |
+
flash(f"Riwayat chat #{chat_id} dihapus.", "success")
|
| 666 |
+
except Exception as e:
|
| 667 |
+
s.rollback(); log.exception(f"[ADMIN] delete chat error: {e}")
|
| 668 |
+
flash("Gagal menghapus riwayat.", "error")
|
| 669 |
+
finally:
|
| 670 |
+
s.close()
|
| 671 |
+
return redirect(request.referrer or url_for("admin_history"))
|
| 672 |
+
|
| 673 |
+
# ========= ENTRY =========
|
| 674 |
+
if __name__ == "__main__":
|
| 675 |
+
port = int(os.environ.get("PORT", 7860))
|
| 676 |
+
app.run(host="0.0.0.0", port=port, debug=False)
|
app.sh
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
set -e
|
| 3 |
+
python prepare_assets.py
|
| 4 |
+
exec gunicorn app:app --workers 1 --threads 8 --timeout 180 --bind 0.0.0.0:$PORT
|
prepare_assets.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# prepare_assets.py
|
| 2 |
+
# Download ONLY: GGUF (llama.cpp) + prefetch guardrail XNLI
|
| 3 |
+
import os, shutil
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
| 6 |
+
|
| 7 |
+
BASE = Path(__file__).resolve().parent
|
| 8 |
+
os.environ.setdefault("HF_HOME", str(BASE / ".hf-cache")) # cache lokal biar cepat restart
|
| 9 |
+
|
| 10 |
+
GGUF_REPO_ID = os.getenv("GGUF_REPO_ID", "unsloth/DeepSeek-R1-0528-Qwen3-8B-GGUF")
|
| 11 |
+
GGUF_FILENAME = os.getenv("GGUF_FILENAME", "DeepSeek-R1-0528-Qwen3-8B-Q4_K_M.gguf")
|
| 12 |
+
XNLI_REPO_ID = os.getenv("XNLI_REPO_ID", "joeddav/xlm-roberta-large-xnli")
|
| 13 |
+
|
| 14 |
+
def ensure_dir(p: Path):
|
| 15 |
+
p.parent.mkdir(parents=True, exist_ok=True)
|
| 16 |
+
|
| 17 |
+
def main():
|
| 18 |
+
print("=== PREPARE_ASSETS start ===")
|
| 19 |
+
|
| 20 |
+
# 1) Download GGUF -> models/
|
| 21 |
+
try:
|
| 22 |
+
target = BASE / "models" / GGUF_FILENAME
|
| 23 |
+
ensure_dir(target)
|
| 24 |
+
local = hf_hub_download(repo_id=GGUF_REPO_ID, filename=GGUF_FILENAME, repo_type="model")
|
| 25 |
+
shutil.copy(local, target)
|
| 26 |
+
print(f"[OK] GGUF -> {target}")
|
| 27 |
+
except Exception as e:
|
| 28 |
+
print(f"[WARN] GGUF download gagal: {e}")
|
| 29 |
+
|
| 30 |
+
# 2) Prefetch guardrail model ke cache (biar pipeline cepat)
|
| 31 |
+
try:
|
| 32 |
+
snapshot_download(repo_id=XNLI_REPO_ID) # hanya ke cache
|
| 33 |
+
print(f"[OK] Prefetch guardrail: {XNLI_REPO_ID}")
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"[WARN] Prefetch XNLI gagal: {e}")
|
| 36 |
+
|
| 37 |
+
print("=== PREPARE_ASSETS done ===")
|
| 38 |
+
|
| 39 |
+
if __name__ == "__main__":
|
| 40 |
+
main()
|
requerments.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask==3.0.3
|
| 2 |
+
jinja2==3.1.4
|
| 3 |
+
werkzeug==3.0.3
|
| 4 |
+
python-dotenv==1.0.1
|
| 5 |
+
|
| 6 |
+
sqlalchemy==2.0.36
|
| 7 |
+
psycopg2-binary==2.9.9
|
| 8 |
+
|
| 9 |
+
numpy==1.26.4
|
| 10 |
+
faiss-cpu==1.8.0
|
| 11 |
+
scikit-learn==1.5.2
|
| 12 |
+
|
| 13 |
+
torch==2.4.1
|
| 14 |
+
transformers==4.44.2
|
| 15 |
+
huggingface_hub==0.26.2
|
| 16 |
+
|
| 17 |
+
llama-cpp-python==0.3.4
|
| 18 |
+
gunicorn==21.2.0
|
runtime.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python-3.11
|