Spaces:
Sleeping
Sleeping
ad
Browse files
app.py
CHANGED
|
@@ -1,14 +1,23 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import os, json, re, time, logging
|
| 4 |
-
from functools import lru_cache
|
| 5 |
from typing import Dict, List, Tuple
|
| 6 |
from dataclasses import dataclass
|
| 7 |
from datetime import datetime
|
| 8 |
from zoneinfo import ZoneInfo
|
| 9 |
from pathlib import Path
|
| 10 |
|
| 11 |
-
from flask import
|
|
|
|
|
|
|
|
|
|
| 12 |
import numpy as np
|
| 13 |
import faiss
|
| 14 |
import torch
|
|
@@ -20,70 +29,72 @@ load_dotenv()
|
|
| 20 |
# ========= ENV & LOGGING =========
|
| 21 |
os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "TRUE")
|
| 22 |
os.environ.setdefault("OMP_NUM_THREADS", "1")
|
| 23 |
-
|
| 24 |
-
torch.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s | %(levelname)s | %(message)s")
|
| 26 |
log = logging.getLogger("rag-app")
|
| 27 |
|
| 28 |
-
# ========= IMPORT EKSTERNAL =========
|
| 29 |
-
from Guardrail import validate_input # -> bool
|
| 30 |
from Model import load_model, generate # -> llama.cpp wrapper
|
| 31 |
|
| 32 |
-
# ========= PATH ROOT
|
| 33 |
BASE_DIR = Path(__file__).resolve().parent
|
| 34 |
|
| 35 |
-
# =========
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
| 40 |
|
| 41 |
-
ENCODER_NAME = "intfloat/multilingual-e5-large"
|
| 42 |
ENCODER_DEVICE = torch.device("cpu")
|
| 43 |
|
| 44 |
-
# Dataset sudah ada di Space → path RELATIF
|
| 45 |
SUBJECTS: Dict[str, Dict[str, str]] = {
|
| 46 |
"ipas": {
|
| 47 |
-
"index":
|
| 48 |
-
"chunks":
|
| 49 |
-
"embeddings": str(BASE_DIR / "Dataset"
|
| 50 |
-
"label":
|
| 51 |
-
"desc":
|
| 52 |
},
|
| 53 |
"penjas": {
|
| 54 |
-
"index":
|
| 55 |
-
"chunks":
|
| 56 |
-
"embeddings": str(BASE_DIR / "Dataset"
|
| 57 |
-
"label":
|
| 58 |
-
"desc":
|
| 59 |
},
|
| 60 |
"pancasila": {
|
| 61 |
-
"index":
|
| 62 |
-
"chunks":
|
| 63 |
-
"embeddings": str(BASE_DIR / "Dataset"
|
| 64 |
-
"label":
|
| 65 |
-
"desc":
|
| 66 |
}
|
| 67 |
}
|
| 68 |
|
| 69 |
-
# Threshold
|
| 70 |
-
TOP_K_FAISS
|
| 71 |
-
TOP_K_FINAL
|
| 72 |
-
MIN_COSINE
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
ENABLE_PROFILING = False
|
| 78 |
|
| 79 |
# ========= APP =========
|
| 80 |
app = Flask(__name__)
|
| 81 |
app.secret_key = os.environ.get("FLASK_SECRET_KEY", "dev-secret-please-change")
|
| 82 |
|
| 83 |
from werkzeug.middleware.proxy_fix import ProxyFix
|
| 84 |
-
|
| 85 |
app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1, x_proto=1, x_host=1)
|
| 86 |
-
# supaya session tersimpan di browser saat lewat proxy/HTTPS (HF Spaces)
|
| 87 |
app.config.update(
|
| 88 |
SESSION_COOKIE_NAME="session",
|
| 89 |
SESSION_COOKIE_SAMESITE="None",
|
|
@@ -93,11 +104,10 @@ app.config.update(
|
|
| 93 |
PREFERRED_URL_SCHEME="https",
|
| 94 |
)
|
| 95 |
|
| 96 |
-
|
| 97 |
-
# ========= GLOBAL MODEL =========
|
| 98 |
ENCODER_TOKENIZER = None
|
| 99 |
-
ENCODER_MODEL
|
| 100 |
-
LLM
|
| 101 |
|
| 102 |
@dataclass(frozen=True)
|
| 103 |
class SubjectAssets:
|
|
@@ -105,18 +115,25 @@ class SubjectAssets:
|
|
| 105 |
texts: List[str]
|
| 106 |
embs: np.ndarray
|
| 107 |
|
| 108 |
-
# ========= TEKS
|
| 109 |
STOPWORDS_ID = {
|
| 110 |
"yang","dan","atau","pada","di","ke","dari","itu","ini","adalah","dengan",
|
| 111 |
"untuk","serta","sebagai","oleh","dalam","akan","kamu","apa","karena",
|
| 112 |
"agar","sehingga","terhadap","dapat","juga","para","diri",
|
| 113 |
}
|
| 114 |
TOKEN_RE = re.compile(r"[A-Za-zÀ-ÖØ-öø-ÿ]+", re.UNICODE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
def tok_id(text: str) -> List[str]:
|
| 116 |
-
return [
|
|
|
|
| 117 |
def lexical_overlap(query: str, sent: str) -> float:
|
| 118 |
q = set(tok_id(query)); s = set(tok_id(sent))
|
| 119 |
-
if not q or not s:
|
|
|
|
| 120 |
return len(q & s) / max(1, len(q | s))
|
| 121 |
|
| 122 |
QUESTION_LIKE_RE = re.compile(r"(^\s*(apa|mengapa|bagaimana|sebutkan|jelaskan)\b|[?]$)", re.IGNORECASE)
|
|
@@ -133,9 +150,10 @@ META_PREFIX_RE = re.compile(r"^\s*(?:" + r"|".join(META_PREFIX_PATTERNS) + r")\s
|
|
| 133 |
|
| 134 |
def clean_prefix(t: str) -> str:
|
| 135 |
t = (t or "").strip()
|
| 136 |
-
for _ in range(
|
| 137 |
t2 = META_PREFIX_RE.sub("", t).lstrip()
|
| 138 |
-
if t2 == t:
|
|
|
|
| 139 |
t = t2
|
| 140 |
return t
|
| 141 |
|
|
@@ -143,23 +161,31 @@ def strip_meta_sentence(s: str) -> str:
|
|
| 143 |
s = clean_prefix(s or "")
|
| 144 |
if re.match(r"^\s*(berdasarkan|menurut|merujuk|mengacu|bersumber|dari)\b", s, re.IGNORECASE):
|
| 145 |
s = re.sub(r"^\s*[^,.;!?]*[,.;!?]\s*", "", s) or s
|
| 146 |
-
|
| 147 |
return s.strip()
|
| 148 |
|
| 149 |
SENT_SPLIT_RE = re.compile(r"(?<=[.!?])\s+")
|
| 150 |
-
|
|
|
|
|
|
|
| 151 |
outs = []
|
| 152 |
for p in SENT_SPLIT_RE.split(text or ""):
|
| 153 |
s = clean_prefix((p or "").strip())
|
| 154 |
-
if not s:
|
| 155 |
-
|
| 156 |
-
if
|
| 157 |
-
|
| 158 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
outs.append(s)
|
| 160 |
return outs
|
| 161 |
|
| 162 |
-
# ========= MODEL WARMUP
|
|
|
|
| 163 |
def warmup_models():
|
| 164 |
global ENCODER_TOKENIZER, ENCODER_MODEL, LLM
|
| 165 |
if ENCODER_TOKENIZER is None or ENCODER_MODEL is None:
|
|
@@ -167,31 +193,35 @@ def warmup_models():
|
|
| 167 |
ENCODER_TOKENIZER = AutoTokenizer.from_pretrained(ENCODER_NAME)
|
| 168 |
ENCODER_MODEL = AutoModel.from_pretrained(ENCODER_NAME).to(ENCODER_DEVICE).eval()
|
| 169 |
if LLM is None:
|
| 170 |
-
log.info(f"[INIT] Load LLM: {MODEL_PATH}")
|
| 171 |
LLM = load_model(MODEL_PATH, n_ctx=CTX_WINDOW, n_gpu_layers=N_GPU_LAYERS, n_threads=N_THREADS)
|
| 172 |
|
| 173 |
-
# =========
|
|
|
|
| 174 |
@lru_cache(maxsize=8)
|
| 175 |
-
def load_subject_assets(subject_key: str) -> SubjectAssets:
|
| 176 |
if subject_key not in SUBJECTS:
|
| 177 |
raise ValueError(f"Unknown subject: {subject_key}")
|
| 178 |
cfg = SUBJECTS[subject_key]
|
| 179 |
log.info(f"[ASSETS] Loading subject={subject_key} | index={cfg['index']}")
|
| 180 |
-
if not os.path.exists(cfg["index"]):
|
| 181 |
-
|
| 182 |
-
if not os.path.exists(cfg["
|
| 183 |
-
|
|
|
|
|
|
|
| 184 |
index = faiss.read_index(cfg["index"])
|
| 185 |
with open(cfg["chunks"], "r", encoding="utf-8") as f:
|
| 186 |
-
texts = [it
|
| 187 |
-
embs = np.load(cfg["embeddings"])
|
| 188 |
if index.ntotal != len(embs):
|
| 189 |
raise RuntimeError(f"Mismatch ntotal({index.ntotal}) vs emb({len(embs)})")
|
| 190 |
-
|
| 191 |
return SubjectAssets(index=index, texts=texts, embs=embs)
|
| 192 |
|
| 193 |
-
# ========= ENCODER
|
|
|
|
| 194 |
@torch.inference_mode()
|
|
|
|
| 195 |
def encode_query_exact(text: str) -> np.ndarray:
|
| 196 |
toks = ENCODER_TOKENIZER(text, padding=True, truncation=True, return_tensors="pt").to(ENCODER_DEVICE)
|
| 197 |
out = ENCODER_MODEL(**toks)
|
|
@@ -200,7 +230,10 @@ def encode_query_exact(text: str) -> np.ndarray:
|
|
| 200 |
|
| 201 |
def cosine_sim(a: np.ndarray, b: np.ndarray) -> float:
|
| 202 |
a = np.asarray(a).reshape(-1); b = np.asarray(b).reshape(-1)
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
def best_cosine_from_faiss(query: str, subject_key: str) -> float:
|
| 206 |
assets = load_subject_assets(subject_key)
|
|
@@ -213,53 +246,54 @@ def best_cosine_from_faiss(query: str, subject_key: str) -> float:
|
|
| 213 |
best = max(best, cosine_sim(qv, assets.embs[i]))
|
| 214 |
return best
|
| 215 |
|
| 216 |
-
def
|
| 217 |
assets = load_subject_assets(subject_key)
|
| 218 |
q = encode_query_exact(query)
|
| 219 |
-
|
| 220 |
idxs = [i for i in idx[0] if 0 <= i < len(assets.texts)]
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
pairs = sorted(zip(scores, idxs), reverse=True)
|
| 226 |
-
top_texts = [assets.texts[i] for _, i in pairs[:TOP_K_FINAL]]
|
| 227 |
-
log.info(f"[RETRIEVE] subject={subject_key} | top={len(top_texts)}")
|
| 228 |
-
return top_texts
|
| 229 |
-
|
| 230 |
-
def pick_best_sentences(query: str, chunks: List[str], top_k: int = 5) -> List[str]:
|
| 231 |
-
if not chunks: return []
|
| 232 |
-
qv = encode_query_exact(query).reshape(-1)
|
| 233 |
cands: List[Tuple[float, str]] = []
|
| 234 |
for ch in chunks:
|
| 235 |
-
for s in
|
| 236 |
-
sv = encode_query_exact(s).reshape(-1)
|
| 237 |
-
cos = cosine_sim(qv, sv)
|
| 238 |
ovl = lexical_overlap(query, s)
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
|
|
|
|
|
|
|
|
|
| 243 |
cands.sort(key=lambda x: x[0], reverse=True)
|
| 244 |
return [s for _, s in cands[:top_k]]
|
| 245 |
|
|
|
|
|
|
|
| 246 |
def build_prompt(user_query: str, sentences: List[str]) -> str:
|
| 247 |
block = "\n".join(f"- {clean_prefix(s)}" for s in sentences)
|
| 248 |
system = (
|
| 249 |
-
"
|
| 250 |
-
"- Jika tidak ada kalimat yang
|
| 251 |
-
"- Jawab TEPAT 1 kalimat, ringkas, Bahasa Indonesia baku.\n"
|
| 252 |
-
"-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
)
|
| 254 |
-
return
|
| 255 |
-
|
| 256 |
-
{block}
|
| 257 |
-
PERTANYAAN:
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
@lru_cache(maxsize=512)
|
| 263 |
def validate_input_cached(q: str) -> bool:
|
| 264 |
try:
|
| 265 |
return validate_input(q)
|
|
@@ -270,7 +304,7 @@ def validate_input_cached(q: str) -> bool:
|
|
| 270 |
# ========= AUTH (POSTGRES) =========
|
| 271 |
from werkzeug.security import generate_password_hash, check_password_hash
|
| 272 |
from sqlalchemy import create_engine, Column, Integer, String, Text, Boolean, func, or_
|
| 273 |
-
from sqlalchemy.orm import sessionmaker, scoped_session, declarative_base
|
| 274 |
|
| 275 |
POSTGRES_URL = os.environ.get("POSTGRES_URL")
|
| 276 |
if not POSTGRES_URL:
|
|
@@ -282,25 +316,26 @@ Base = declarative_base()
|
|
| 282 |
|
| 283 |
class User(Base):
|
| 284 |
__tablename__ = "users"
|
| 285 |
-
id
|
| 286 |
-
username
|
| 287 |
-
email
|
| 288 |
-
password
|
| 289 |
is_active = Column(Boolean, default=True, nullable=False)
|
| 290 |
is_admin = Column(Boolean, default=False, nullable=False)
|
| 291 |
|
| 292 |
class ChatHistory(Base):
|
| 293 |
__tablename__ = "chat_history"
|
| 294 |
-
id
|
| 295 |
-
user_id
|
| 296 |
subject_key = Column(String(50), nullable=False, index=True)
|
| 297 |
-
role
|
| 298 |
-
message
|
| 299 |
-
timestamp
|
| 300 |
|
| 301 |
Base.metadata.create_all(bind=engine)
|
| 302 |
|
| 303 |
JKT_TZ = ZoneInfo("Asia/Jakarta")
|
|
|
|
| 304 |
@app.template_filter("fmt_ts")
|
| 305 |
def fmt_ts(epoch_int: int):
|
| 306 |
try:
|
|
@@ -313,14 +348,15 @@ def db():
|
|
| 313 |
return SessionLocal()
|
| 314 |
|
| 315 |
def login_required(view_func):
|
|
|
|
| 316 |
def wrapper(*args, **kwargs):
|
| 317 |
if not session.get("logged_in"):
|
| 318 |
return redirect(url_for("auth_login"))
|
| 319 |
return view_func(*args, **kwargs)
|
| 320 |
-
wrapper.__name__ = view_func.__name__
|
| 321 |
return wrapper
|
| 322 |
|
| 323 |
def admin_required(view_func):
|
|
|
|
| 324 |
def wrapper(*args, **kwargs):
|
| 325 |
if not session.get("logged_in"):
|
| 326 |
return redirect(url_for("auth_login"))
|
|
@@ -328,10 +364,8 @@ def admin_required(view_func):
|
|
| 328 |
flash("Hanya admin yang boleh mengakses halaman itu.", "error")
|
| 329 |
return redirect(url_for("subjects"))
|
| 330 |
return view_func(*args, **kwargs)
|
| 331 |
-
wrapper.__name__ = view_func.__name__
|
| 332 |
return wrapper
|
| 333 |
|
| 334 |
-
|
| 335 |
# ========= ROUTES =========
|
| 336 |
@app.route("/")
|
| 337 |
def root():
|
|
@@ -341,38 +375,30 @@ def root():
|
|
| 341 |
def auth_login():
|
| 342 |
if request.method == "POST":
|
| 343 |
identity = (
|
| 344 |
-
request.form.get("identity")
|
| 345 |
-
or request.form.get("email")
|
| 346 |
-
or request.form.get("username")
|
| 347 |
-
or ""
|
| 348 |
).strip().lower()
|
| 349 |
pw_input = (request.form.get("password") or "").strip()
|
| 350 |
-
|
| 351 |
if not identity or not pw_input:
|
| 352 |
flash("Mohon isi email/username dan password.", "error")
|
| 353 |
return render_template("login.html"), 400
|
| 354 |
-
|
| 355 |
s = db()
|
| 356 |
try:
|
| 357 |
user = (
|
| 358 |
s.query(User)
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
.first()
|
| 362 |
)
|
| 363 |
log.info(f"[LOGIN] identity='{identity}' found={bool(user)} active={getattr(user,'is_active',None)}")
|
| 364 |
ok = bool(user and user.is_active and check_password_hash(user.password, pw_input))
|
| 365 |
finally:
|
| 366 |
s.close()
|
| 367 |
-
|
| 368 |
if not ok:
|
| 369 |
flash("Identitas atau password salah.", "error")
|
| 370 |
return render_template("login.html"), 401
|
| 371 |
-
|
| 372 |
session["logged_in"] = True
|
| 373 |
-
session["user_id"]
|
| 374 |
-
session["username"]
|
| 375 |
-
session["is_admin"]
|
| 376 |
log.info(f"[LOGIN] OK user_id={user.id}; session set.")
|
| 377 |
return redirect(url_for("subjects"))
|
| 378 |
return render_template("login.html")
|
|
@@ -386,7 +412,6 @@ def whoami():
|
|
| 386 |
"is_admin": session.get("is_admin"),
|
| 387 |
}
|
| 388 |
|
| 389 |
-
|
| 390 |
@app.route("/auth/register", methods=["GET", "POST"])
|
| 391 |
def auth_register():
|
| 392 |
if request.method == "POST":
|
|
@@ -407,9 +432,8 @@ def auth_register():
|
|
| 407 |
try:
|
| 408 |
existed = (
|
| 409 |
s.query(User)
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
.first()
|
| 413 |
)
|
| 414 |
if existed:
|
| 415 |
flash("Username/Email sudah terpakai.", "error")
|
|
@@ -431,14 +455,12 @@ def auth_logout():
|
|
| 431 |
def about():
|
| 432 |
return render_template("about.html")
|
| 433 |
|
| 434 |
-
|
| 435 |
@app.route("/subjects")
|
| 436 |
@login_required
|
| 437 |
def subjects():
|
| 438 |
log.info(f"[SESSION DEBUG] logged_in={session.get('logged_in')} user_id={session.get('user_id')}")
|
| 439 |
return render_template("home.html", subjects=SUBJECTS)
|
| 440 |
|
| 441 |
-
|
| 442 |
@app.route("/chat/<subject_key>")
|
| 443 |
@login_required
|
| 444 |
def chat_subject(subject_key: str):
|
|
@@ -446,39 +468,41 @@ def chat_subject(subject_key: str):
|
|
| 446 |
return redirect(url_for("subjects"))
|
| 447 |
session["subject_selected"] = subject_key
|
| 448 |
label = SUBJECTS[subject_key]["label"]
|
| 449 |
-
|
| 450 |
s = db()
|
| 451 |
try:
|
| 452 |
uid = session.get("user_id")
|
| 453 |
rows = (
|
| 454 |
s.query(ChatHistory)
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
)
|
| 459 |
history = [{"role": r.role, "message": r.message} for r in rows]
|
| 460 |
finally:
|
| 461 |
s.close()
|
| 462 |
-
|
| 463 |
return render_template("chat.html", subject=subject_key, subject_label=label, history=history)
|
| 464 |
|
| 465 |
@app.route("/health")
|
| 466 |
def health():
|
| 467 |
-
return jsonify({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
|
| 469 |
@app.route("/ask/<subject_key>", methods=["POST"])
|
| 470 |
@login_required
|
| 471 |
def ask(subject_key: str):
|
| 472 |
if subject_key not in SUBJECTS:
|
| 473 |
return jsonify({"ok": False, "error": "invalid subject"}), 400
|
| 474 |
-
|
| 475 |
-
# pastikan model siap saat request (lazy)
|
| 476 |
warmup_models()
|
| 477 |
-
|
| 478 |
t0 = time.perf_counter()
|
| 479 |
-
data = request.get_json(silent=True) or {}
|
| 480 |
-
query = (data.get("message") or "").strip()
|
| 481 |
|
|
|
|
|
|
|
| 482 |
if not query:
|
| 483 |
return jsonify({"ok": False, "error": "empty query"}), 400
|
| 484 |
if not validate_input_cached(query):
|
|
@@ -495,71 +519,112 @@ def ask(subject_key: str):
|
|
| 495 |
if best < MIN_COSINE:
|
| 496 |
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 497 |
|
| 498 |
-
chunks =
|
| 499 |
if not chunks:
|
| 500 |
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 501 |
-
|
|
|
|
| 502 |
if not sentences:
|
| 503 |
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 504 |
|
| 505 |
prompt = build_prompt(query, sentences)
|
| 506 |
|
| 507 |
try:
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
except Exception as e:
|
| 516 |
log.exception(f"[LLM] generate error: {e}")
|
| 517 |
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 518 |
|
|
|
|
| 519 |
m = re.search(r"(.+?[.!?])(\s|$)", answer)
|
| 520 |
answer = (m.group(1) if m else answer).strip()
|
| 521 |
answer = strip_meta_sentence(answer)
|
| 522 |
|
| 523 |
-
#
|
| 524 |
try:
|
| 525 |
s = db()
|
| 526 |
uid = session.get("user_id")
|
| 527 |
s.add_all([
|
| 528 |
ChatHistory(user_id=uid, subject_key=subject_key, role="user", message=query),
|
| 529 |
-
ChatHistory(user_id=uid, subject_key=subject_key, role="bot",
|
| 530 |
])
|
| 531 |
s.commit()
|
| 532 |
except Exception as e:
|
| 533 |
log.exception(f"[DB] gagal simpan chat history: {e}")
|
| 534 |
finally:
|
| 535 |
-
|
|
|
|
|
|
|
|
|
|
| 536 |
|
| 537 |
if not answer or len(answer) < 2:
|
| 538 |
answer = FALLBACK_TEXT
|
| 539 |
|
| 540 |
if ENABLE_PROFILING:
|
| 541 |
-
log.info({
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
|
| 543 |
return jsonify({"ok": True, "answer": answer})
|
| 544 |
|
| 545 |
-
# ===== Admin
|
| 546 |
-
from sqlalchemy.orm import Session
|
| 547 |
@app.route("/admin")
|
| 548 |
@admin_required
|
| 549 |
def admin_dashboard():
|
| 550 |
s = db()
|
| 551 |
try:
|
| 552 |
-
total_users
|
| 553 |
-
total_active
|
| 554 |
-
total_admins
|
| 555 |
-
total_msgs
|
| 556 |
finally:
|
| 557 |
s.close()
|
| 558 |
-
return render_template("admin_dashboard.html",
|
| 559 |
-
total_users=total_users,
|
| 560 |
-
total_active=total_active,
|
| 561 |
-
total_admins=total_admins,
|
| 562 |
-
total_msgs=total_msgs)
|
| 563 |
|
| 564 |
@app.route("/admin/users")
|
| 565 |
@admin_required
|
|
@@ -571,59 +636,39 @@ def admin_users():
|
|
| 571 |
try:
|
| 572 |
base = s.query(User)
|
| 573 |
if q:
|
| 574 |
-
base = base.filter(or_(
|
| 575 |
-
func.lower(User.username).like(f"%{q}%"),
|
| 576 |
-
func.lower(User.email).like(f"%{q}%")
|
| 577 |
-
))
|
| 578 |
total = base.count()
|
| 579 |
-
users = (
|
| 580 |
-
.order_by(User.id.asc())
|
| 581 |
-
.offset((page - 1) * per_page)
|
| 582 |
-
.limit(per_page)
|
| 583 |
-
.all())
|
| 584 |
user_ids = [u.id for u in users] or [-1]
|
| 585 |
-
counts = dict(s.query(ChatHistory.user_id, func.count(ChatHistory.id))
|
| 586 |
-
.filter(ChatHistory.user_id.in_(user_ids))
|
| 587 |
-
.group_by(ChatHistory.user_id)
|
| 588 |
-
.all())
|
| 589 |
finally:
|
| 590 |
s.close()
|
| 591 |
-
return render_template("admin_users.html",
|
| 592 |
-
users=users, counts=counts,
|
| 593 |
-
q=q, page=page, per_page=per_page, total=total)
|
| 594 |
|
| 595 |
@app.route("/admin/history")
|
| 596 |
@admin_required
|
| 597 |
def admin_history():
|
| 598 |
-
q
|
| 599 |
-
username
|
| 600 |
-
subject
|
| 601 |
-
role
|
| 602 |
-
page
|
| 603 |
-
per_page
|
| 604 |
-
|
| 605 |
s = db()
|
| 606 |
try:
|
| 607 |
base = (s.query(ChatHistory, User).join(User, User.id == ChatHistory.user_id))
|
| 608 |
if q:
|
| 609 |
base = base.filter(func.lower(ChatHistory.message).like(f"%{q}%"))
|
| 610 |
if username:
|
| 611 |
-
base = base.filter(or_(
|
| 612 |
-
func.lower(User.username) == username,
|
| 613 |
-
func.lower(User.email) == username
|
| 614 |
-
))
|
| 615 |
if subject:
|
| 616 |
base = base.filter(func.lower(ChatHistory.subject_key) == subject)
|
| 617 |
if role in ("user", "bot"):
|
| 618 |
base = base.filter(ChatHistory.role == role)
|
| 619 |
total = base.count()
|
| 620 |
-
rows =
|
| 621 |
-
.offset((page - 1) * per_page)
|
| 622 |
-
.limit(per_page)
|
| 623 |
-
.all())
|
| 624 |
finally:
|
| 625 |
s.close()
|
| 626 |
-
|
| 627 |
items = [{
|
| 628 |
"id": r.ChatHistory.id,
|
| 629 |
"username": r.User.username,
|
|
@@ -633,11 +678,7 @@ def admin_history():
|
|
| 633 |
"message": r.ChatHistory.message,
|
| 634 |
"timestamp": r.ChatHistory.timestamp,
|
| 635 |
} for r in rows]
|
| 636 |
-
|
| 637 |
-
return render_template("admin_history.html",
|
| 638 |
-
items=items, subjects=SUBJECTS,
|
| 639 |
-
q=q, username=username, subject=subject, role=role,
|
| 640 |
-
page=page, per_page=per_page, total=total)
|
| 641 |
|
| 642 |
def _is_last_admin(s: Session) -> bool:
|
| 643 |
return (s.query(func.count(User.id)).filter(User.is_admin.is_(True)).scalar() or 0) <= 1
|
|
@@ -708,4 +749,4 @@ def admin_delete_chat(chat_id: int):
|
|
| 708 |
# ========= ENTRY =========
|
| 709 |
if __name__ == "__main__":
|
| 710 |
port = int(os.environ.get("PORT", 7860))
|
| 711 |
-
app.run(host="0.0.0.0", port=port, debug=False)
|
|
|
|
| 1 |
+
# app.py (HF Spaces CPU-Optimized)
|
| 2 |
+
# RAG sekolah super hemat CPU:
|
| 3 |
+
# - Default model: 3B instruct (GGUF) + ctx 1024
|
| 4 |
+
# - Retrieval cepat: FAISS top-12 → pilih kalimat pakai lexical overlap (tanpa encode per-kalimat)
|
| 5 |
+
# - Encoder dipakai HANYA untuk query & FAISS (1x per request)
|
| 6 |
+
# - Jawaban final lewat <final>...</final>, stop di </final>, retry kalau kosong/ellipsis
|
| 7 |
+
# - Admin + Auth Postgres tetap sama
|
| 8 |
+
|
| 9 |
import os, json, re, time, logging
|
| 10 |
+
from functools import lru_cache, wraps
|
| 11 |
from typing import Dict, List, Tuple
|
| 12 |
from dataclasses import dataclass
|
| 13 |
from datetime import datetime
|
| 14 |
from zoneinfo import ZoneInfo
|
| 15 |
from pathlib import Path
|
| 16 |
|
| 17 |
+
from flask import (
|
| 18 |
+
Flask, render_template, request, redirect, url_for, session, jsonify, flash
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
import numpy as np
|
| 22 |
import faiss
|
| 23 |
import torch
|
|
|
|
| 29 |
# ========= ENV & LOGGING =========
|
| 30 |
os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "TRUE")
|
| 31 |
os.environ.setdefault("OMP_NUM_THREADS", "1")
|
| 32 |
+
try:
|
| 33 |
+
torch.set_num_threads(int(os.environ.get("NUM_THREADS", "3"))) # 3 thread cukup di CPU Spaces
|
| 34 |
+
torch.set_num_interop_threads(1)
|
| 35 |
+
except Exception:
|
| 36 |
+
pass
|
| 37 |
+
|
| 38 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s | %(levelname)s | %(message)s")
|
| 39 |
log = logging.getLogger("rag-app")
|
| 40 |
|
| 41 |
+
# ========= IMPORT EKSTERNAL (wrapper & guardrail) =========
|
| 42 |
+
from Guardrail import validate_input # -> bool
|
| 43 |
from Model import load_model, generate # -> llama.cpp wrapper
|
| 44 |
|
| 45 |
+
# ========= PATH ROOT =========
|
| 46 |
BASE_DIR = Path(__file__).resolve().parent
|
| 47 |
|
| 48 |
+
# ========= KONFIG MODEL & RAG (di-tune untuk CPU) =========
|
| 49 |
+
GGUF_DEFAULT = "DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf" # kecil & cepat; upload ke /models
|
| 50 |
+
MODEL_PATH = str(BASE_DIR / "models" / os.getenv("GGUF_FILENAME", GGUF_DEFAULT))
|
| 51 |
+
CTX_WINDOW = int(os.environ.get("CTX_WINDOW", 1024))
|
| 52 |
+
N_GPU_LAYERS = int(os.environ.get("N_GPU_LAYERS", 0))
|
| 53 |
+
N_THREADS = int(os.environ.get("NUM_THREADS", 3))
|
| 54 |
|
| 55 |
+
ENCODER_NAME = os.environ.get("ENCODER_NAME", "intfloat/multilingual-e5-large")
|
| 56 |
ENCODER_DEVICE = torch.device("cpu")
|
| 57 |
|
| 58 |
+
# Dataset sudah ada di Space → path RELATIF (samakan dengan struktur kamu)
|
| 59 |
SUBJECTS: Dict[str, Dict[str, str]] = {
|
| 60 |
"ipas": {
|
| 61 |
+
"index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Ipas" / "IPA_index.index"),
|
| 62 |
+
"chunks": str(BASE_DIR / "Dataset" / "Ipas" / "Chunk" / "ipas_chunks.json"),
|
| 63 |
+
"embeddings": str(BASE_DIR / "Dataset" / "Ipas" / "Embedd"/ "ipas_embeddings.npy"),
|
| 64 |
+
"label": "IPAS",
|
| 65 |
+
"desc": "Ilmu Pengetahuan Alam dan Sosial"
|
| 66 |
},
|
| 67 |
"penjas": {
|
| 68 |
+
"index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Penjas" / "PENJAS_index.index"),
|
| 69 |
+
"chunks": str(BASE_DIR / "Dataset" / "Penjas" / "Chunk" / "penjas_chunks.json"),
|
| 70 |
+
"embeddings": str(BASE_DIR / "Dataset" / "Penjas" / "Embedd" / "penjas_embeddings.npy"),
|
| 71 |
+
"label": "PJOK",
|
| 72 |
+
"desc": "Pendidikan Jasmani, Olahraga, dan Kesehatan"
|
| 73 |
},
|
| 74 |
"pancasila": {
|
| 75 |
+
"index": str(BASE_DIR / "Rag-Pipeline" / "Vektor Database" / "Pancasila" / "PANCASILA_index.index"),
|
| 76 |
+
"chunks": str(BASE_DIR / "Dataset" / "Pancasila" / "Chunk" / "pancasila_chunks.json"),
|
| 77 |
+
"embeddings": str(BASE_DIR / "Dataset" / "Pancasila" / "Embedd" / "pancasila_embeddings.npy"),
|
| 78 |
+
"label": "PANCASILA",
|
| 79 |
+
"desc": "Pendidikan Pancasila dan Kewarganegaraan"
|
| 80 |
}
|
| 81 |
}
|
| 82 |
|
| 83 |
+
# Threshold & parameter cepat
|
| 84 |
+
TOP_K_FAISS = int(os.environ.get("TOP_K_FAISS", 12))
|
| 85 |
+
TOP_K_FINAL = int(os.environ.get("TOP_K_FINAL", 6))
|
| 86 |
+
MIN_COSINE = float(os.environ.get("MIN_COSINE", 0.80)) # lebih longgar biar jarang fallback
|
| 87 |
+
MIN_LEXICAL = float(os.environ.get("MIN_LEXICAL", 0.10))
|
| 88 |
+
FALLBACK_TEXT = os.environ.get("FALLBACK_TEXT", "maap pengetahuan tidak ada dalam database")
|
| 89 |
+
GUARDRAIL_BLOCK_TEXT = os.environ.get("GUARDRAIL_BLOCK_TEXT", "maap, pertanyaan ditolak oleh guardrail")
|
| 90 |
+
ENABLE_PROFILING = os.environ.get("ENABLE_PROFILING", "false").lower() == "true"
|
|
|
|
| 91 |
|
| 92 |
# ========= APP =========
|
| 93 |
app = Flask(__name__)
|
| 94 |
app.secret_key = os.environ.get("FLASK_SECRET_KEY", "dev-secret-please-change")
|
| 95 |
|
| 96 |
from werkzeug.middleware.proxy_fix import ProxyFix
|
|
|
|
| 97 |
app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1, x_proto=1, x_host=1)
|
|
|
|
| 98 |
app.config.update(
|
| 99 |
SESSION_COOKIE_NAME="session",
|
| 100 |
SESSION_COOKIE_SAMESITE="None",
|
|
|
|
| 104 |
PREFERRED_URL_SCHEME="https",
|
| 105 |
)
|
| 106 |
|
| 107 |
+
# ========= GLOBALS =========
|
|
|
|
| 108 |
ENCODER_TOKENIZER = None
|
| 109 |
+
ENCODER_MODEL = None
|
| 110 |
+
LLM = None
|
| 111 |
|
| 112 |
@dataclass(frozen=True)
|
| 113 |
class SubjectAssets:
|
|
|
|
| 115 |
texts: List[str]
|
| 116 |
embs: np.ndarray
|
| 117 |
|
| 118 |
+
# ========= TEKS UTIL =========
|
| 119 |
STOPWORDS_ID = {
|
| 120 |
"yang","dan","atau","pada","di","ke","dari","itu","ini","adalah","dengan",
|
| 121 |
"untuk","serta","sebagai","oleh","dalam","akan","kamu","apa","karena",
|
| 122 |
"agar","sehingga","terhadap","dapat","juga","para","diri",
|
| 123 |
}
|
| 124 |
TOKEN_RE = re.compile(r"[A-Za-zÀ-ÖØ-öø-ÿ]+", re.UNICODE)
|
| 125 |
+
|
| 126 |
+
@lru_cache(maxsize=4096)
|
| 127 |
+
def _tok_cached(word: str) -> str:
|
| 128 |
+
return word.lower()
|
| 129 |
+
|
| 130 |
def tok_id(text: str) -> List[str]:
|
| 131 |
+
return [tw for w in TOKEN_RE.findall(text or "") if (tw:=_tok_cached(w)) not in STOPWORDS_ID]
|
| 132 |
+
|
| 133 |
def lexical_overlap(query: str, sent: str) -> float:
|
| 134 |
q = set(tok_id(query)); s = set(tok_id(sent))
|
| 135 |
+
if not q or not s:
|
| 136 |
+
return 0.0
|
| 137 |
return len(q & s) / max(1, len(q | s))
|
| 138 |
|
| 139 |
QUESTION_LIKE_RE = re.compile(r"(^\s*(apa|mengapa|bagaimana|sebutkan|jelaskan)\b|[?]$)", re.IGNORECASE)
|
|
|
|
| 150 |
|
| 151 |
def clean_prefix(t: str) -> str:
|
| 152 |
t = (t or "").strip()
|
| 153 |
+
for _ in range(3):
|
| 154 |
t2 = META_PREFIX_RE.sub("", t).lstrip()
|
| 155 |
+
if t2 == t:
|
| 156 |
+
break
|
| 157 |
t = t2
|
| 158 |
return t
|
| 159 |
|
|
|
|
| 161 |
s = clean_prefix(s or "")
|
| 162 |
if re.match(r"^\s*(berdasarkan|menurut|merujuk|mengacu|bersumber|dari)\b", s, re.IGNORECASE):
|
| 163 |
s = re.sub(r"^\s*[^,.;!?]*[,.;!?]\s*", "", s) or s
|
| 164 |
+
s = clean_prefix(s)
|
| 165 |
return s.strip()
|
| 166 |
|
| 167 |
SENT_SPLIT_RE = re.compile(r"(?<=[.!?])\s+")
|
| 168 |
+
|
| 169 |
+
def split_sentences_fast(text: str) -> List[str]:
|
| 170 |
+
# tanpa encoding per-kalimat
|
| 171 |
outs = []
|
| 172 |
for p in SENT_SPLIT_RE.split(text or ""):
|
| 173 |
s = clean_prefix((p or "").strip())
|
| 174 |
+
if not s:
|
| 175 |
+
continue
|
| 176 |
+
if s[-1] not in ".!?":
|
| 177 |
+
s += "."
|
| 178 |
+
if QUESTION_LIKE_RE.search(s):
|
| 179 |
+
continue
|
| 180 |
+
if INSTRUCTION_RE.search(s):
|
| 181 |
+
continue
|
| 182 |
+
if len(s) < 12:
|
| 183 |
+
continue
|
| 184 |
outs.append(s)
|
| 185 |
return outs
|
| 186 |
|
| 187 |
+
# ========= MODEL WARMUP =========
|
| 188 |
+
|
| 189 |
def warmup_models():
|
| 190 |
global ENCODER_TOKENIZER, ENCODER_MODEL, LLM
|
| 191 |
if ENCODER_TOKENIZER is None or ENCODER_MODEL is None:
|
|
|
|
| 193 |
ENCODER_TOKENIZER = AutoTokenizer.from_pretrained(ENCODER_NAME)
|
| 194 |
ENCODER_MODEL = AutoModel.from_pretrained(ENCODER_NAME).to(ENCODER_DEVICE).eval()
|
| 195 |
if LLM is None:
|
| 196 |
+
log.info(f"[INIT] Load LLM: {MODEL_PATH} | ctx={CTX_WINDOW} | threads={N_THREADS}")
|
| 197 |
LLM = load_model(MODEL_PATH, n_ctx=CTX_WINDOW, n_gpu_layers=N_GPU_LAYERS, n_threads=N_THREADS)
|
| 198 |
|
| 199 |
+
# ========= ASSETS =========
|
| 200 |
+
|
| 201 |
@lru_cache(maxsize=8)
|
| 202 |
+
def load_subject_assets(subject_key: str) -> "SubjectAssets":
|
| 203 |
if subject_key not in SUBJECTS:
|
| 204 |
raise ValueError(f"Unknown subject: {subject_key}")
|
| 205 |
cfg = SUBJECTS[subject_key]
|
| 206 |
log.info(f"[ASSETS] Loading subject={subject_key} | index={cfg['index']}")
|
| 207 |
+
if not os.path.exists(cfg["index"]):
|
| 208 |
+
raise FileNotFoundError(cfg["index"])
|
| 209 |
+
if not os.path.exists(cfg["chunks"]):
|
| 210 |
+
raise FileNotFoundError(cfg["chunks"])
|
| 211 |
+
if not os.path.exists(cfg["embeddings"]):
|
| 212 |
+
raise FileNotFoundError(cfg["embeddings"])
|
| 213 |
index = faiss.read_index(cfg["index"])
|
| 214 |
with open(cfg["chunks"], "r", encoding="utf-8") as f:
|
| 215 |
+
texts = [it.get("text", "") for it in json.load(f)]
|
| 216 |
+
embs = np.load(cfg["embeddings"]) # (N, dim)
|
| 217 |
if index.ntotal != len(embs):
|
| 218 |
raise RuntimeError(f"Mismatch ntotal({index.ntotal}) vs emb({len(embs)})")
|
|
|
|
| 219 |
return SubjectAssets(index=index, texts=texts, embs=embs)
|
| 220 |
|
| 221 |
+
# ========= ENCODER =========
|
| 222 |
+
|
| 223 |
@torch.inference_mode()
|
| 224 |
+
@lru_cache(maxsize=1024)
|
| 225 |
def encode_query_exact(text: str) -> np.ndarray:
|
| 226 |
toks = ENCODER_TOKENIZER(text, padding=True, truncation=True, return_tensors="pt").to(ENCODER_DEVICE)
|
| 227 |
out = ENCODER_MODEL(**toks)
|
|
|
|
| 230 |
|
| 231 |
def cosine_sim(a: np.ndarray, b: np.ndarray) -> float:
|
| 232 |
a = np.asarray(a).reshape(-1); b = np.asarray(b).reshape(-1)
|
| 233 |
+
denom = (np.linalg.norm(a) * np.linalg.norm(b)) + 1e-12
|
| 234 |
+
return float(np.dot(a, b) / denom)
|
| 235 |
+
|
| 236 |
+
# ========= RETRIEVAL CEPAT =========
|
| 237 |
|
| 238 |
def best_cosine_from_faiss(query: str, subject_key: str) -> float:
|
| 239 |
assets = load_subject_assets(subject_key)
|
|
|
|
| 246 |
best = max(best, cosine_sim(qv, assets.embs[i]))
|
| 247 |
return best
|
| 248 |
|
| 249 |
+
def retrieve_top_chunks(query: str, subject_key: str) -> List[str]:
|
| 250 |
assets = load_subject_assets(subject_key)
|
| 251 |
q = encode_query_exact(query)
|
| 252 |
+
_, idx = assets.index.search(q, TOP_K_FAISS)
|
| 253 |
idxs = [i for i in idx[0] if 0 <= i < len(assets.texts)]
|
| 254 |
+
return [assets.texts[i] for i in idxs[:TOP_K_FINAL]]
|
| 255 |
+
|
| 256 |
+
def pick_best_sentences_fast(query: str, chunks: List[str], top_k: int = 4) -> List[str]:
|
| 257 |
+
# Tanpa encode per kalimat — hanya lexical overlap + panjang wajar
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
cands: List[Tuple[float, str]] = []
|
| 259 |
for ch in chunks:
|
| 260 |
+
for s in split_sentences_fast(ch):
|
|
|
|
|
|
|
| 261 |
ovl = lexical_overlap(query, s)
|
| 262 |
+
if ovl < MIN_LEXICAL:
|
| 263 |
+
continue
|
| 264 |
+
# bonus sedikit kalau kalimat panjang wajar (50–220 char)
|
| 265 |
+
L = len(s)
|
| 266 |
+
len_bonus = 0.05 if 50 <= L <= 220 else 0.0
|
| 267 |
+
score = ovl + len_bonus
|
| 268 |
+
cands.append((score, s))
|
| 269 |
cands.sort(key=lambda x: x[0], reverse=True)
|
| 270 |
return [s for _, s in cands[:top_k]]
|
| 271 |
|
| 272 |
+
# ========= PROMPT =========
|
| 273 |
+
|
| 274 |
def build_prompt(user_query: str, sentences: List[str]) -> str:
|
| 275 |
block = "\n".join(f"- {clean_prefix(s)}" for s in sentences)
|
| 276 |
system = (
|
| 277 |
+
"Kamu asisten RAG.\n"
|
| 278 |
+
f"- Jika tidak ada kalimat yang relevan, tulis persis: {FALLBACK_TEXT}\n"
|
| 279 |
+
"- Jawab TEPAT 1 kalimat, ringkas, Bahasa Indonesia baku (≥ 6 kata).\n"
|
| 280 |
+
"- Tanpa frasa meta (berdasarkan/menurut/merujuk/mengacu/bersumber).\n"
|
| 281 |
+
"- Tulis jawaban final di dalam tag <final>Jawaban.</final> dan jangan menulis apa pun setelah </final>."
|
| 282 |
+
)
|
| 283 |
+
fewshot = (
|
| 284 |
+
"Contoh format: \n"
|
| 285 |
+
"KALIMAT SUMBER:\n- Air memuai saat dipanaskan.\n"
|
| 286 |
+
"PERTANYAAN: Apa yang terjadi pada air saat dipanaskan?\n"
|
| 287 |
+
"<final>Air akan memuai ketika dipanaskan.</final>\n"
|
| 288 |
)
|
| 289 |
+
return (
|
| 290 |
+
f"{system}\n\n{fewshot}\n"
|
| 291 |
+
f"KALIMAT SUMBER:\n{block}\n\n"
|
| 292 |
+
f"PERTANYAAN: {user_query}\n"
|
| 293 |
+
f"TULIS JAWABAN DI DALAM <final>...</final> SAJA:"
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
@lru_cache(maxsize=1024)
|
|
|
|
| 297 |
def validate_input_cached(q: str) -> bool:
|
| 298 |
try:
|
| 299 |
return validate_input(q)
|
|
|
|
| 304 |
# ========= AUTH (POSTGRES) =========
|
| 305 |
from werkzeug.security import generate_password_hash, check_password_hash
|
| 306 |
from sqlalchemy import create_engine, Column, Integer, String, Text, Boolean, func, or_
|
| 307 |
+
from sqlalchemy.orm import sessionmaker, scoped_session, declarative_base, Session
|
| 308 |
|
| 309 |
POSTGRES_URL = os.environ.get("POSTGRES_URL")
|
| 310 |
if not POSTGRES_URL:
|
|
|
|
| 316 |
|
| 317 |
class User(Base):
|
| 318 |
__tablename__ = "users"
|
| 319 |
+
id = Column(Integer, primary_key=True)
|
| 320 |
+
username = Column(String(50), unique=True, nullable=False, index=True)
|
| 321 |
+
email = Column(String(120), unique=True, nullable=False, index=True)
|
| 322 |
+
password = Column(Text, nullable=False)
|
| 323 |
is_active = Column(Boolean, default=True, nullable=False)
|
| 324 |
is_admin = Column(Boolean, default=False, nullable=False)
|
| 325 |
|
| 326 |
class ChatHistory(Base):
|
| 327 |
__tablename__ = "chat_history"
|
| 328 |
+
id = Column(Integer, primary_key=True)
|
| 329 |
+
user_id = Column(Integer, nullable=False, index=True)
|
| 330 |
subject_key = Column(String(50), nullable=False, index=True)
|
| 331 |
+
role = Column(String(10), nullable=False)
|
| 332 |
+
message = Column(Text, nullable=False)
|
| 333 |
+
timestamp = Column(Integer, server_default=func.extract("epoch", func.now()))
|
| 334 |
|
| 335 |
Base.metadata.create_all(bind=engine)
|
| 336 |
|
| 337 |
JKT_TZ = ZoneInfo("Asia/Jakarta")
|
| 338 |
+
|
| 339 |
@app.template_filter("fmt_ts")
|
| 340 |
def fmt_ts(epoch_int: int):
|
| 341 |
try:
|
|
|
|
| 348 |
return SessionLocal()
|
| 349 |
|
| 350 |
def login_required(view_func):
|
| 351 |
+
@wraps(view_func)
|
| 352 |
def wrapper(*args, **kwargs):
|
| 353 |
if not session.get("logged_in"):
|
| 354 |
return redirect(url_for("auth_login"))
|
| 355 |
return view_func(*args, **kwargs)
|
|
|
|
| 356 |
return wrapper
|
| 357 |
|
| 358 |
def admin_required(view_func):
|
| 359 |
+
@wraps(view_func)
|
| 360 |
def wrapper(*args, **kwargs):
|
| 361 |
if not session.get("logged_in"):
|
| 362 |
return redirect(url_for("auth_login"))
|
|
|
|
| 364 |
flash("Hanya admin yang boleh mengakses halaman itu.", "error")
|
| 365 |
return redirect(url_for("subjects"))
|
| 366 |
return view_func(*args, **kwargs)
|
|
|
|
| 367 |
return wrapper
|
| 368 |
|
|
|
|
| 369 |
# ========= ROUTES =========
|
| 370 |
@app.route("/")
|
| 371 |
def root():
|
|
|
|
| 375 |
def auth_login():
|
| 376 |
if request.method == "POST":
|
| 377 |
identity = (
|
| 378 |
+
request.form.get("identity") or request.form.get("email") or request.form.get("username") or ""
|
|
|
|
|
|
|
|
|
|
| 379 |
).strip().lower()
|
| 380 |
pw_input = (request.form.get("password") or "").strip()
|
|
|
|
| 381 |
if not identity or not pw_input:
|
| 382 |
flash("Mohon isi email/username dan password.", "error")
|
| 383 |
return render_template("login.html"), 400
|
|
|
|
| 384 |
s = db()
|
| 385 |
try:
|
| 386 |
user = (
|
| 387 |
s.query(User)
|
| 388 |
+
.filter(or_(func.lower(User.username) == identity, func.lower(User.email) == identity))
|
| 389 |
+
.first()
|
|
|
|
| 390 |
)
|
| 391 |
log.info(f"[LOGIN] identity='{identity}' found={bool(user)} active={getattr(user,'is_active',None)}")
|
| 392 |
ok = bool(user and user.is_active and check_password_hash(user.password, pw_input))
|
| 393 |
finally:
|
| 394 |
s.close()
|
|
|
|
| 395 |
if not ok:
|
| 396 |
flash("Identitas atau password salah.", "error")
|
| 397 |
return render_template("login.html"), 401
|
|
|
|
| 398 |
session["logged_in"] = True
|
| 399 |
+
session["user_id"] = user.id
|
| 400 |
+
session["username"] = user.username
|
| 401 |
+
session["is_admin"] = bool(user.is_admin)
|
| 402 |
log.info(f"[LOGIN] OK user_id={user.id}; session set.")
|
| 403 |
return redirect(url_for("subjects"))
|
| 404 |
return render_template("login.html")
|
|
|
|
| 412 |
"is_admin": session.get("is_admin"),
|
| 413 |
}
|
| 414 |
|
|
|
|
| 415 |
@app.route("/auth/register", methods=["GET", "POST"])
|
| 416 |
def auth_register():
|
| 417 |
if request.method == "POST":
|
|
|
|
| 432 |
try:
|
| 433 |
existed = (
|
| 434 |
s.query(User)
|
| 435 |
+
.filter(or_(func.lower(User.username) == username, func.lower(User.email) == email))
|
| 436 |
+
.first()
|
|
|
|
| 437 |
)
|
| 438 |
if existed:
|
| 439 |
flash("Username/Email sudah terpakai.", "error")
|
|
|
|
| 455 |
def about():
|
| 456 |
return render_template("about.html")
|
| 457 |
|
|
|
|
| 458 |
@app.route("/subjects")
|
| 459 |
@login_required
|
| 460 |
def subjects():
|
| 461 |
log.info(f"[SESSION DEBUG] logged_in={session.get('logged_in')} user_id={session.get('user_id')}")
|
| 462 |
return render_template("home.html", subjects=SUBJECTS)
|
| 463 |
|
|
|
|
| 464 |
@app.route("/chat/<subject_key>")
|
| 465 |
@login_required
|
| 466 |
def chat_subject(subject_key: str):
|
|
|
|
| 468 |
return redirect(url_for("subjects"))
|
| 469 |
session["subject_selected"] = subject_key
|
| 470 |
label = SUBJECTS[subject_key]["label"]
|
|
|
|
| 471 |
s = db()
|
| 472 |
try:
|
| 473 |
uid = session.get("user_id")
|
| 474 |
rows = (
|
| 475 |
s.query(ChatHistory)
|
| 476 |
+
.filter_by(user_id=uid, subject_key=subject_key)
|
| 477 |
+
.order_by(ChatHistory.id.asc())
|
| 478 |
+
.all()
|
| 479 |
)
|
| 480 |
history = [{"role": r.role, "message": r.message} for r in rows]
|
| 481 |
finally:
|
| 482 |
s.close()
|
|
|
|
| 483 |
return render_template("chat.html", subject=subject_key, subject_label=label, history=history)
|
| 484 |
|
| 485 |
@app.route("/health")
|
| 486 |
def health():
|
| 487 |
+
return jsonify({
|
| 488 |
+
"ok": True,
|
| 489 |
+
"encoder_loaded": ENCODER_MODEL is not None,
|
| 490 |
+
"llm_loaded": LLM is not None,
|
| 491 |
+
"model_path": MODEL_PATH,
|
| 492 |
+
"ctx_window": CTX_WINDOW,
|
| 493 |
+
"threads": N_THREADS,
|
| 494 |
+
})
|
| 495 |
|
| 496 |
@app.route("/ask/<subject_key>", methods=["POST"])
|
| 497 |
@login_required
|
| 498 |
def ask(subject_key: str):
|
| 499 |
if subject_key not in SUBJECTS:
|
| 500 |
return jsonify({"ok": False, "error": "invalid subject"}), 400
|
|
|
|
|
|
|
| 501 |
warmup_models()
|
|
|
|
| 502 |
t0 = time.perf_counter()
|
|
|
|
|
|
|
| 503 |
|
| 504 |
+
data = request.get_json(silent=True) or {}
|
| 505 |
+
query = (data.get("message") or "").strip()
|
| 506 |
if not query:
|
| 507 |
return jsonify({"ok": False, "error": "empty query"}), 400
|
| 508 |
if not validate_input_cached(query):
|
|
|
|
| 519 |
if best < MIN_COSINE:
|
| 520 |
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 521 |
|
| 522 |
+
chunks = retrieve_top_chunks(query, subject_key)
|
| 523 |
if not chunks:
|
| 524 |
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 525 |
+
|
| 526 |
+
sentences = pick_best_sentences_fast(query, chunks, top_k=4)
|
| 527 |
if not sentences:
|
| 528 |
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 529 |
|
| 530 |
prompt = build_prompt(query, sentences)
|
| 531 |
|
| 532 |
try:
|
| 533 |
+
# PASS-1: deterministik & singkat
|
| 534 |
+
raw_answer = generate(
|
| 535 |
+
LLM,
|
| 536 |
+
prompt,
|
| 537 |
+
max_tokens=int(os.environ.get("MAX_TOKENS", 72)),
|
| 538 |
+
temperature=float(os.environ.get("TEMP", 0.0)),
|
| 539 |
+
top_p=1.0,
|
| 540 |
+
stop=["</final>"]
|
| 541 |
+
) or ""
|
| 542 |
+
raw_answer = raw_answer.strip()
|
| 543 |
+
log.info(f"[LLM] Raw answer repr (pass1): {repr(raw_answer)}")
|
| 544 |
+
|
| 545 |
+
text = re.sub(r"<think\b[^>]*>.*?</think>", "", raw_answer, flags=re.DOTALL | re.IGNORECASE).strip()
|
| 546 |
+
text = re.sub(r"</?think\b[^>]*>", "", text, flags=re.IGNORECASE).strip()
|
| 547 |
+
m_final = re.search(r"<final>\s*(.+)$", text, flags=re.IGNORECASE | re.DOTALL)
|
| 548 |
+
cleaned = (m_final.group(1).strip() if m_final else re.sub(r"<[^>]+>", "", text).strip())
|
| 549 |
+
|
| 550 |
+
def _is_bad(s: str) -> bool:
|
| 551 |
+
s2 = s.strip()
|
| 552 |
+
return (len(re.sub(r"[^A-Za-zÀ-ÖØ-öø-ÿ]+", "", s2)) < 3) or (s2 in {"...", ".", "..", "…"}) or (len(s2.split()) < 6)
|
| 553 |
+
|
| 554 |
+
if _is_bad(cleaned):
|
| 555 |
+
prompt_retry = (
|
| 556 |
+
prompt
|
| 557 |
+
+ "\n\nULANGI DENGAN TAAT FORMAT: Tulis satu kalimat faktual tanpa placeholder/ellipsis, minimal 6 kata, mulai huruf kapital dan akhiri titik. Tulis hanya di dalam <final>...</final>."
|
| 558 |
+
)
|
| 559 |
+
raw_answer2 = generate(
|
| 560 |
+
LLM,
|
| 561 |
+
prompt_retry,
|
| 562 |
+
max_tokens=int(os.environ.get("MAX_TOKENS", 72)),
|
| 563 |
+
temperature=0.2,
|
| 564 |
+
top_p=1.0,
|
| 565 |
+
stop=["</final>"]
|
| 566 |
+
) or ""
|
| 567 |
+
raw_answer2 = raw_answer2.strip()
|
| 568 |
+
log.info(f"[LLM] Raw answer repr (pass2): {repr(raw_answer2)}")
|
| 569 |
+
text2 = re.sub(r"<think\b[^>]*>.*?</think>", "", raw_answer2, flags=re.DOTALL | re.IGNORECASE).strip()
|
| 570 |
+
text2 = re.sub(r"</?think\b[^>]*>", "", text2, flags=re.IGNORECASE).strip()
|
| 571 |
+
m_final2 = re.search(r"<final>\s*(.+)$", text2, flags=re.IGNORECASE | re.DOTALL)
|
| 572 |
+
cleaned2 = (m_final2.group(1).strip() if m_final2 else re.sub(r"<[^>]+>", "", text2).strip())
|
| 573 |
+
cleaned = cleaned2 or cleaned
|
| 574 |
+
|
| 575 |
+
answer = cleaned
|
| 576 |
+
|
| 577 |
except Exception as e:
|
| 578 |
log.exception(f"[LLM] generate error: {e}")
|
| 579 |
return jsonify({"ok": True, "answer": FALLBACK_TEXT})
|
| 580 |
|
| 581 |
+
# Ambil 1 kalimat pertama saja
|
| 582 |
m = re.search(r"(.+?[.!?])(\s|$)", answer)
|
| 583 |
answer = (m.group(1) if m else answer).strip()
|
| 584 |
answer = strip_meta_sentence(answer)
|
| 585 |
|
| 586 |
+
# Simpan history
|
| 587 |
try:
|
| 588 |
s = db()
|
| 589 |
uid = session.get("user_id")
|
| 590 |
s.add_all([
|
| 591 |
ChatHistory(user_id=uid, subject_key=subject_key, role="user", message=query),
|
| 592 |
+
ChatHistory(user_id=uid, subject_key=subject_key, role="bot", message=answer),
|
| 593 |
])
|
| 594 |
s.commit()
|
| 595 |
except Exception as e:
|
| 596 |
log.exception(f"[DB] gagal simpan chat history: {e}")
|
| 597 |
finally:
|
| 598 |
+
try:
|
| 599 |
+
s.close()
|
| 600 |
+
except Exception:
|
| 601 |
+
pass
|
| 602 |
|
| 603 |
if not answer or len(answer) < 2:
|
| 604 |
answer = FALLBACK_TEXT
|
| 605 |
|
| 606 |
if ENABLE_PROFILING:
|
| 607 |
+
log.info({
|
| 608 |
+
"latency_total": time.perf_counter() - t0,
|
| 609 |
+
"subject": subject_key,
|
| 610 |
+
"faiss_best": best,
|
| 611 |
+
})
|
| 612 |
|
| 613 |
return jsonify({"ok": True, "answer": answer})
|
| 614 |
|
| 615 |
+
# ===== Admin =====
|
|
|
|
| 616 |
@app.route("/admin")
|
| 617 |
@admin_required
|
| 618 |
def admin_dashboard():
|
| 619 |
s = db()
|
| 620 |
try:
|
| 621 |
+
total_users = s.query(func.count(User.id)).scalar() or 0
|
| 622 |
+
total_active = s.query(func.count(User.id)).filter(User.is_active.is_(True)).scalar() or 0
|
| 623 |
+
total_admins = s.query(func.count(User.id)).filter(User.is_admin.is_(True)).scalar() or 0
|
| 624 |
+
total_msgs = s.query(func.count(ChatHistory.id)).scalar() or 0
|
| 625 |
finally:
|
| 626 |
s.close()
|
| 627 |
+
return render_template("admin_dashboard.html", total_users=total_users, total_active=total_active, total_admins=total_admins, total_msgs=total_msgs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
|
| 629 |
@app.route("/admin/users")
|
| 630 |
@admin_required
|
|
|
|
| 636 |
try:
|
| 637 |
base = s.query(User)
|
| 638 |
if q:
|
| 639 |
+
base = base.filter(or_(func.lower(User.username).like(f"%{q}%"), func.lower(User.email).like(f"%{q}%")))
|
|
|
|
|
|
|
|
|
|
| 640 |
total = base.count()
|
| 641 |
+
users = base.order_by(User.id.asc()).offset((page - 1) * per_page).limit(per_page).all()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 642 |
user_ids = [u.id for u in users] or [-1]
|
| 643 |
+
counts = dict(s.query(ChatHistory.user_id, func.count(ChatHistory.id)).filter(ChatHistory.user_id.in_(user_ids)).group_by(ChatHistory.user_id).all())
|
|
|
|
|
|
|
|
|
|
| 644 |
finally:
|
| 645 |
s.close()
|
| 646 |
+
return render_template("admin_users.html", users=users, counts=counts, q=q, page=page, per_page=per_page, total=total)
|
|
|
|
|
|
|
| 647 |
|
| 648 |
@app.route("/admin/history")
|
| 649 |
@admin_required
|
| 650 |
def admin_history():
|
| 651 |
+
q = (request.args.get("q") or "").strip().lower()
|
| 652 |
+
username = (request.args.get("username") or "").strip().lower()
|
| 653 |
+
subject = (request.args.get("subject") or "").strip().lower()
|
| 654 |
+
role = (request.args.get("role") or "").strip().lower()
|
| 655 |
+
page = max(int(request.args.get("page", 1)), 1)
|
| 656 |
+
per_page = min(max(int(request.args.get("per_page", 30)), 5), 200)
|
|
|
|
| 657 |
s = db()
|
| 658 |
try:
|
| 659 |
base = (s.query(ChatHistory, User).join(User, User.id == ChatHistory.user_id))
|
| 660 |
if q:
|
| 661 |
base = base.filter(func.lower(ChatHistory.message).like(f"%{q}%"))
|
| 662 |
if username:
|
| 663 |
+
base = base.filter(or_(func.lower(User.username) == username, func.lower(User.email) == username))
|
|
|
|
|
|
|
|
|
|
| 664 |
if subject:
|
| 665 |
base = base.filter(func.lower(ChatHistory.subject_key) == subject)
|
| 666 |
if role in ("user", "bot"):
|
| 667 |
base = base.filter(ChatHistory.role == role)
|
| 668 |
total = base.count()
|
| 669 |
+
rows = base.order_by(ChatHistory.id.desc()).offset((page - 1) * per_page).limit(per_page).all()
|
|
|
|
|
|
|
|
|
|
| 670 |
finally:
|
| 671 |
s.close()
|
|
|
|
| 672 |
items = [{
|
| 673 |
"id": r.ChatHistory.id,
|
| 674 |
"username": r.User.username,
|
|
|
|
| 678 |
"message": r.ChatHistory.message,
|
| 679 |
"timestamp": r.ChatHistory.timestamp,
|
| 680 |
} for r in rows]
|
| 681 |
+
return render_template("admin_history.html", items=items, subjects=SUBJECTS, q=q, username=username, subject=subject, role=role, page=page, per_page=per_page, total=total)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 682 |
|
| 683 |
def _is_last_admin(s: Session) -> bool:
|
| 684 |
return (s.query(func.count(User.id)).filter(User.is_admin.is_(True)).scalar() or 0) <= 1
|
|
|
|
| 749 |
# ========= ENTRY =========
|
| 750 |
if __name__ == "__main__":
|
| 751 |
port = int(os.environ.get("PORT", 7860))
|
| 752 |
+
app.run(host="0.0.0.0", port=port, debug=False)
|