Spaces:
Sleeping
Sleeping
Update abstractive_model.py
Browse files- abstractive_model.py +13 -5
abstractive_model.py
CHANGED
|
@@ -4,9 +4,17 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
| 4 |
tokenizer = AutoTokenizer.from_pretrained("EE21/BART-ToSSimplify")
|
| 5 |
model = AutoModelForSeq2SeqLM.from_pretrained("EE21/BART-ToSSimplify")
|
| 6 |
|
| 7 |
-
# Define
|
| 8 |
-
def summarize_with_bart(input_text):
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
return summary
|
|
|
|
| 4 |
tokenizer = AutoTokenizer.from_pretrained("EE21/BART-ToSSimplify")
|
| 5 |
model = AutoModelForSeq2SeqLM.from_pretrained("EE21/BART-ToSSimplify")
|
| 6 |
|
| 7 |
+
# Define a function to summarize text with minimum length constraint
|
| 8 |
+
def summarize_with_bart(input_text, max_summary_tokens=200, min_summary_tokens=100, do_sample=False):
|
| 9 |
+
# Tokenize the input text and return input_ids as PyTorch tensors
|
| 10 |
+
inputs = tokenizer(input_text, return_tensors="pt").input_ids
|
| 11 |
+
# Generate the summary with minimum and maximum length constraints
|
| 12 |
+
outputs = model.generate(inputs,
|
| 13 |
+
max_length=max_summary_tokens,
|
| 14 |
+
min_length=min_summary_tokens,
|
| 15 |
+
do_sample=do_sample)
|
| 16 |
+
|
| 17 |
+
# Decode the generated token IDs back into text
|
| 18 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 19 |
+
|
| 20 |
return summary
|