File size: 21,384 Bytes
4fc13d4
 
 
 
59b01a4
4fc13d4
 
 
 
 
 
 
8a19dbc
4fc13d4
 
59b01a4
 
4fc13d4
59b01a4
 
 
 
 
 
4fc13d4
59b01a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fc13d4
59b01a4
 
 
 
 
 
 
 
 
 
4fc13d4
59b01a4
 
 
 
 
 
 
 
4fc13d4
59b01a4
4fc13d4
 
 
59b01a4
4fc13d4
 
 
 
59b01a4
4fc13d4
59b01a4
 
 
 
4fc13d4
59b01a4
 
4fc13d4
 
59b01a4
 
4fc13d4
59b01a4
 
 
 
 
be68989
d2e4f4f
59b01a4
 
 
4fc13d4
 
59b01a4
4fc13d4
59b01a4
4fc13d4
 
 
 
 
 
 
 
 
 
 
 
 
 
59b01a4
 
4fc13d4
 
 
59b01a4
4fc13d4
 
 
 
 
 
be68989
 
 
4fc13d4
be68989
 
4fc13d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b01a4
 
4fc13d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b01a4
4fc13d4
59b01a4
4fc13d4
 
 
 
 
 
be68989
4fc13d4
 
 
 
be68989
4fc13d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b01a4
4fc13d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b01a4
4fc13d4
59b01a4
4fc13d4
59b01a4
4fc13d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371926f
 
 
 
 
 
 
 
59b01a4
4fc13d4
371926f
4fc13d4
 
 
 
 
 
59b01a4
4fc13d4
 
 
 
59b01a4
4fc13d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b01a4
4fc13d4
 
 
 
c1adab6
4fc13d4
59b01a4
4fc13d4
 
59b01a4
4fc13d4
 
 
 
59b01a4
4fc13d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be68989
 
 
 
 
 
4fc13d4
be68989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fc13d4
 
be68989
 
4fc13d4
59b01a4
 
 
4fc13d4
 
 
 
59b01a4
4fc13d4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import re
import tempfile
from collections import Counter
from pathlib import Path
from typing import Literal, Optional

import gradio as gr
import torch

from NatureLM.config import Config
from NatureLM.models.NatureLM import NatureLM
from NatureLM.utils import generate_sample_batches, prepare_sample_waveforms
import spaces


class ModelManager:
    """Manages model loading and state"""
    
    def __init__(self):
        self.model: Optional[NatureLM] = None
        self.config: Optional[Config] = None
        self.is_loaded = False
        self.is_loading = False
        self.load_failed = False
    
    def check_availability(self) -> tuple[bool, str]:
        """Check if the model is available for download"""
        try:
            from huggingface_hub import model_info
            info = model_info("EarthSpeciesProject/NatureLM-audio")
            return True, "Model is available"
        except Exception as e:
            return False, f"Model not available: {str(e)}"
    
    def reset_state(self):
        """Reset the model loading state to allow retrying after a failure"""
        self.model = None
        self.is_loaded = False
        self.is_loading = False
        self.load_failed = False
        return self.get_status()
    
    def get_status(self) -> str:
        """Get the current model loading status"""
        if self.is_loaded:
            return "βœ… Model loaded and ready"
        elif self.is_loading:
            return "πŸ”„ Loading model... Please wait"
        elif self.load_failed:
            return "❌ Model failed to load. Please check the configuration."
        else:
            return "⏳ Ready to load model on first use"
    
    def load_model(self) -> Optional[NatureLM]:
        """Load the model if needed"""
        if self.is_loaded:
            return self.model
        
        if self.is_loading or self.load_failed:
            return None
        
        try:
            self.is_loading = True
            print("Loading model...")
            
            # Check if model is available first
            available, message = self.check_availability()
            if not available:
                raise Exception(f"Model not available: {message}")
            
            model = NatureLM.from_pretrained("EarthSpeciesProject/NatureLM-audio")
            model.to("cuda")
            model.eval()
            
            self.model = model
            self.is_loaded = True
            self.is_loading = False
            print("Model loaded successfully!")
            return model
            
        except Exception as e:
            print(f"Error loading model: {e}")
            self.is_loading = False
            self.load_failed = True
            return None


# Global model manager instance
model_manager = ModelManager()

 
@spaces.GPU
def prompt_lm(audios: list[str], messages: list[dict[str, str]]) -> str:
    """Generate response using the model"""
    model = model_manager.load_model()
    
    if model is None:
        if model_manager.is_loading:
            return "πŸ”„ Loading model... This may take a few minutes on first use. Please try again in a moment."
        elif model_manager.load_failed:
            return "❌ Model failed to load. This could be due to:\nβ€’ No internet connection\nβ€’ Insufficient disk space\nβ€’ Model repository access issues\n\nPlease check your connection and try again using the retry button."
        else:
            return "Demo mode: Model not loaded. Please check the model configuration."
    
    cuda_enabled = torch.cuda.is_available()
    samples = prepare_sample_waveforms(audios, cuda_enabled)
    prompt_text = model.llama_tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    ).removeprefix(model.llama_tokenizer.bos_token)

    prompt_text = re.sub(
        r"<\|start_header_id\|>system<\|end_header_id\|>\n\nCutting Knowledge Date: [^\n]+\nToday Date: [^\n]+\n\n<\|eot_id\|>",
        "",
        prompt_text,
    )
    prompt_text = re.sub("\\n", r"\\n", prompt_text)

    print(f"{prompt_text=}")
    with torch.cuda.amp.autocast(dtype=torch.float16):
        llm_answer = model.generate(samples, model_manager.config.generate, prompts=[prompt_text])
    return llm_answer[0]


def _multimodal_textbox_factory():
    return gr.MultimodalTextbox(
        value=None,
        interactive=True, 
        sources="microphone",
        placeholder="Enter message...",
        show_label=False,
        autofocus=True,
        submit_btn="Send"
    )


def user_message(content):
    return {"role": "user", "content": content}


def add_message(history, message):
    for x in message["files"]:
        history.append(user_message({"path": x}))
    if message["text"]:
        history.append(user_message(message["text"]))
    return history, _multimodal_textbox_factory()


def combine_model_inputs(msgs: list[dict[str, str]]) -> dict[str, list[str]]:
    messages = []
    files = []
    for msg in msgs:
        print(msg, messages, files)
        match msg:
            case {"content": (path,)}:
                messages.append({"role": msg["role"], "content": "<Audio><AudioHere></Audio> "})
                files.append(path)
            case _:
                messages.append(msg)
    
    # Join consecutive messages from the same role
    joined_messages = []
    for msg in messages:
        if joined_messages and joined_messages[-1]["role"] == msg["role"]:
            joined_messages[-1]["content"] += msg["content"]
        else:
            joined_messages.append(msg)

    return {"messages": joined_messages, "files": files}


def bot_response(history: list):
    print(type(history))
    combined_inputs = combine_model_inputs(history)
    response = prompt_lm(combined_inputs["files"], combined_inputs["messages"])
    history.append({"role": "assistant", "content": response})
    return history


def _chat_tab(examples):
    # Status indicator
    status_text = gr.Textbox(
        value=model_manager.get_status(),
        label="Model Status",
        interactive=False,
        visible=True
    )
    
    chatbot = gr.Chatbot(
        label="Chat",
        elem_id="chatbot",
        bubble_full_width=False,
        type="messages",
        render_markdown=False,
        resizeable=True
    )

    chat_input = _multimodal_textbox_factory()
    send_all = gr.Button("Send all", elem_id="send-all")
    clear_button = gr.ClearButton(components=[chatbot, chat_input], visible=False)

    chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
    bot_msg = send_all.click(
        bot_response,
        [chatbot],
        [chatbot],
        api_name="bot_response",
    )

    # Update status after bot response
    bot_msg.then(lambda: model_manager.get_status(), None, [status_text])
    bot_msg.then(lambda: gr.ClearButton(visible=True), None, [clear_button])
    clear_button.click(lambda: gr.ClearButton(visible=False), None, [clear_button])

    gr.Examples(
        list(examples.values()),
        chatbot,
        chatbot,
        example_labels=list(examples.keys()),
        examples_per_page=20,
    )


def summarize_batch_results(results):
    summary = Counter(results)
    summary_str = "\n".join(f"{k}: {v}" for k, v in summary.most_common())
    return summary_str


def run_batch_inference(files, task, progress=gr.Progress()) -> str:
    model = model_manager.load_model()
    if model is None:
        if model_manager.is_loading:
            return "πŸ”„ Loading model... This may take a few minutes on first use. Please try again in a moment."
        elif model_manager.load_failed:
            return "❌ Model failed to load. This could be due to:\nβ€’ No internet connection\nβ€’ Insufficient disk space\nβ€’ Model repository access issues\n\nPlease check your connection and try again."
        else:
            return "Demo mode: Model not loaded. Please check the model configuration."
    
    outputs = []
    prompt = "<Audio><AudioHere></Audio> " + task

    for file in progress.tqdm(files):
        outputs.append(prompt_lm([file], [{"role": "user", "content": prompt}]))

    batch_summary: str = summarize_batch_results(outputs)
    report = f"Batch summary:\n{batch_summary}\n\n"
    return report


def multi_extension_glob_mask(mask_base, *extensions):
    mask_ext = ["[{}]".format("".join(set(c))) for c in zip(*extensions)]
    if not mask_ext or len(set(len(e) for e in extensions)) > 1:
        mask_ext.append("*")
    return mask_base + "".join(mask_ext)


def _batch_tab(file_selection: Literal["upload", "explorer"] = "upload"):
    if file_selection == "explorer":
        files = gr.FileExplorer(
            glob=multi_extension_glob_mask("**.", "mp3", "flac", "wav"),
            label="Select audio files",
            file_count="multiple",
        )
    elif file_selection == "upload":
        files = gr.Files(label="Uploaded files", file_types=["audio"], height=300)
    task = gr.Textbox(label="Task", placeholder="Enter task...", show_label=True)

    process_btn = gr.Button("Process")
    output = gr.TextArea()

    process_btn.click(
        run_batch_inference,
        [files, task],
        [output],
    )


def to_raven_format(outputs: dict[int, str], chunk_len: int = 10) -> str:
    def get_line(row, start, end, annotation):
        return f"{row}\tSpectrogram 1\t1\t{start}\t{end}\t0\t8000\t{annotation}"

    raven_output = ["Selection\tView\tChannel\tBegin Time (s)\tEnd Time (s)\tLow Freq (Hz)\tHigh Freq (Hz)\tAnnotation"]
    current_offset = 0
    last_label = ""
    row = 1

    for offset, label in sorted(outputs.items()):
        if label != last_label and last_label:
            raven_output.append(get_line(row, current_offset, offset, last_label))
            current_offset = offset
            row += 1
        if not last_label:
            current_offset = offset
        if label != "None":
            last_label = label
        else:
            last_label = ""
    if last_label:
        raven_output.append(get_line(row, current_offset, current_offset + chunk_len, last_label))

    return "\n".join(raven_output)


def _run_long_recording_inference(file, task, chunk_len: int = 10, hop_len: int = 5, progress=gr.Progress()):
    # Check if model is loading
    if model_manager.is_loading:
        return "πŸ”„ Loading model... This may take a few minutes on first use. Please try again in a moment.", None
    
    # Check if model failed to load
    if model_manager.load_failed:
        return "❌ Model failed to load. This could be due to:\nβ€’ No internet connection\nβ€’ Insufficient disk space\nβ€’ Model repository access issues\n\nPlease refresh the page to try again.", None
    
    model = model_manager.load_model()
    if model is None:
        return "Demo mode: Model not loaded. Please check the model configuration.", None
    
    cuda_enabled = torch.cuda.is_available()
    outputs = {}
    offset = 0

    prompt = f"<Audio><AudioHere></Audio> {task}"
    prompt = model_manager.config.model.prompt_template.format(prompt)

    for batch in progress.tqdm(generate_sample_batches(file, cuda_enabled, chunk_len=chunk_len, hop_len=hop_len)):
        prompt_strs = [prompt] * len(batch["audio_chunk_sizes"])
        with torch.cuda.amp.autocast(dtype=torch.float16):
            llm_answers = model.generate(batch, model_manager.config.generate, prompts=prompt_strs)
        for answer in llm_answers:
            outputs[offset] = answer
            offset += hop_len

    report = f"Number of chunks: {len(outputs)}\n\n"
    for offset in sorted(outputs.keys()):
        report += f"{offset:02d}s:\t{outputs[offset]}\n"

    raven_output = to_raven_format(outputs, chunk_len=chunk_len)
    with tempfile.NamedTemporaryFile(mode="w", prefix="raven-", suffix=".txt", delete=False) as f:
        f.write(raven_output)
        raven_file = f.name

    return report, raven_file


def _long_recording_tab():
    audio_input = gr.Audio(label="Upload audio file", type="filepath")
    task = gr.Dropdown(
        [
            "What are the common names for the species in the audio, if any?",
            "Caption the audio.",
            "Caption the audio, using the scientific name for any animal species.",
            "Caption the audio, using the common name for any animal species.",
            "What is the scientific name for the focal species in the audio?",
            "What is the common name for the focal species in the audio?",
            "What is the family of the focal species in the audio?",
            "What is the genus of the focal species in the audio?",
            "What is the taxonomic name of the focal species in the audio?",
            "What call types are heard from the focal species in the audio?",
            "What is the life stage of the focal species in the audio?",
        ],
        label="Tasks",
        allow_custom_value=True,
    )
    with gr.Accordion("Advanced options", open=False):
        hop_len = gr.Slider(1, 10, 5, label="Hop length (seconds)", step=1)
        chunk_len = gr.Slider(1, 10, 10, label="Chunk length (seconds)", step=1)
    process_btn = gr.Button("Process")
    output = gr.TextArea()
    download_raven = gr.DownloadButton("Download Raven file")

    process_btn.click(
        _run_long_recording_inference,
        [audio_input, task, chunk_len, hop_len],
        [output, download_raven],
    )


def main(
    assets_dir: Path,
    cfg_path: str | Path,
    options: list[str] = [],
    device: str = "cuda",
):
    # Load configuration
    try:
        cfg = Config.from_sources(yaml_file=cfg_path, cli_args=options)
        model_manager.config = cfg
        print("Configuration loaded successfully")
    except Exception as e:
        print(f"Warning: Could not load config: {e}")
        print("Running in demo mode")
        model_manager.config = None

    # Check if assets directory exists, if not create a placeholder
    if not assets_dir.exists():
        print(f"Warning: Assets directory {assets_dir} does not exist")
        assets_dir.mkdir(exist_ok=True)
        
    # Create placeholder audio files if they don't exist
    laz_audio = assets_dir / "Lazuli_Bunting_yell-YELLLAZB20160625SM303143.mp3"
    frog_audio = assets_dir / "nri-GreenTreeFrogEvergladesNP.mp3"
    robin_audio = assets_dir / "yell-YELLAMRO20160506SM3.mp3"
    vireo_audio = assets_dir / "yell-YELLWarblingVireoMammoth20150614T29ms.mp3"

    examples = {
        "Caption the audio (Lazuli Bunting)": [
            [
                user_message({"path": str(laz_audio)}),
                user_message("Caption the audio."),
            ]
        ],
        "Caption the audio (Green Tree Frog)": [
            [
                user_message({"path": str(frog_audio)}),
                user_message("Caption the audio, using the common name for any animal species."),
            ]
        ],
        "Caption the audio (American Robin)": [
            [
                user_message({"path": str(robin_audio)}),
                user_message("Caption the audio."),
            ]
        ],
        "Caption the audio (Warbling Vireo)": [
            [
                user_message({"path": str(vireo_audio)}),
                user_message("Caption the audio."),
            ]
        ],
    }

    with gr.Blocks(title="NatureLM-audio", theme=gr.themes.Base(primary_hue="blue", font=[gr.themes.GoogleFont("Noto Sans")])) as app:
        header = gr.HTML("""
        <div style="display: flex; align-items: center; gap: 12px;"><h2 style="margin: 0;">NatureLM-audio<span style="font-size: 0.55em; color: #28a745; background: #e6f4ea; padding: 2px 6px; border-radius: 4px; margin-left: 8px; display: inline-block; vertical-align: top;">BETA</span></h2></div>
        
        """)
         
        with gr.Tabs():
            with gr.Tab("Analyze Audio"):
                uploaded_audio = gr.State() 
                with gr.Column(visible=True) as onboarding_message: 
                    gr.HTML("""
                    <div style="
                        background: transparent;
                        border: 1px solid #e5e7eb;
                        border-radius: 8px;
                        padding: 16px 20px;
                        display: flex;
                        align-items: center;
                        justify-content: space-between;
                        margin-bottom: 16px;
                        margin-left: 0;
                        margin-right: 0;
                        box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
                    ">
                        <div style="display: flex; padding: 0px; align-items: center; flex: 1;">
                            <div style="font-size: 20px; margin-right: 12px;">πŸ‘‹</div>
                            <div style="flex: 1;">
                                <div style="font-size: 16px; font-weight: 600; color: #374151; margin-bottom: 4px;">Welcome to NatureLM-audio!</div>
                                <div style="font-size: 14px; color: #6b7280; line-height: 1.4;">Upload your first audio file below or try a sample from our library.</div>
                            </div>
                        </div>
                        <a href="https://www.earthspecies.org/blog" target="_blank" style=" 
                            padding: 6px 12px;
                            border-radius: 6px;
                            font-size: 13px;
                            font-weight: 500;
                            cursor: pointer;
                            border: none;
                            background: #3b82f6;
                            color: white;
                            text-decoration: none;
                            display: inline-block;
                            transition: background 0.2s ease;
                        " 
                        onmouseover="this.style.background='#2563eb';"
                        onmouseout="this.style.background='#3b82f6';"
                        >View Tutorial</a>
                    </div>
                    """, padding=False)
                with gr.Column(visible=True) as upload_section:
                    audio_input = gr.Audio( 
                        type="filepath",
                        container=True,  
                        interactive=True,  
                        sources=['upload']
                )
                with gr.Group(visible=False) as chat:
                    chatbot = gr.Chatbot( 
                        elem_id="chatbot", 
                        type="messages", 
                        render_markdown=False,
                        feedback_options=["like", "dislike", "wrong species", "incorrect response", "other"],
                        resizeable=True
                    )
                    chat_input = _multimodal_textbox_factory()
                    send_all = gr.Button("Send all")

                    
                    def start_chat_interface(audio_path):
                        return ( 
                            gr.update(visible=False), # hide onboarding message
                            gr.update(visible=True),  # show upload section
                            gr.update(visible=True),  # show chat box 
                        )

                    audio_input.change(
                        fn=start_chat_interface,
                        inputs=[audio_input],
                        outputs=[onboarding_message, upload_section, chat]
                    )

                    chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
                    send_all.click(bot_response, [chatbot], [chatbot])


            with gr.Tab("Sample Library"):
                gr.Markdown("## Sample Library\n\nExplore example audio files below.") 
                gr.Examples(
                    list(examples.values()),
                    chatbot,
                    chatbot,
                    example_labels=list(examples.keys()),
                    examples_per_page=20,
                )
            with gr.Tab("πŸ’‘ Help"):
                gr.Markdown("## User Guide") # to fill out 
                gr.Markdown("## Share Feedback") # to fill out
                gr.Markdown("## FAQs") # to fill out
 
            app.css = """
            .welcome-banner {
                background: transparent !important;
                border: 1px solid #e5e7eb !important;
                border-radius: 8px !important;
                padding: 16px 20px !important;
                margin-bottom: 16px !important;
                box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
            }
            
            .welcome-banner > div {
                background: transparent !important;
            }
            
            .welcome-banner button {
                margin: 0 4px !important;
            }
            """
            # Disabling Batch and Long Recording tabs for now
            """ with gr.Tab("Batch"):
                _batch_tab()
            with gr.Tab("Long Recording"):
                _long_recording_tab() """
        
    return app


# Create and launch the app
app = main(
    assets_dir=Path("assets"),
    cfg_path=Path("configs/inference.yml"),
    options=[],
    device="cuda",
)

if __name__ == "__main__":
    app.launch()