gagannarula's picture
gagan/modelmerging_and_multiturn (#6)
6d06ff9 verified
# Copyright (2024) Earth Species Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hashlib
import logging
import os
from collections import OrderedDict
from pathlib import Path
from typing import Literal, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import PyTorchModelHubMixin
from peft import LoraConfig, TaskType, get_peft_model
from torch.nn import CrossEntropyLoss
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteriaList
from NatureLM.checkpoint_utils import save_model_checkpoint
from NatureLM.config import BeatsConfig, ModelConfig, save_config_as_yaml
from NatureLM.utils import universal_torch_load
from .beats.BEATs import BEATs, BEATsConfig
from .Qformer import BertConfig, BertLMHeadModel
from .utils import StoppingCriteriaSub
torch.backends.cuda.matmul.allow_tf32 = True
auth_token = os.getenv("llama", None)
class AudioEncodingCache:
"""LRU cache for audio encoding with content-based hashing."""
def __init__(self, capacity: int = 100):
self.capacity = capacity
self.cache = OrderedDict()
self.hits = 0
self.misses = 0
def _compute_hash(
self, raw_wav: torch.Tensor, audio_padding_mask: torch.Tensor | None = None
) -> str:
"""Compute a hash key from the audio tensor and padding mask."""
# Use a sample of the tensor for efficiency (first, middle, last portions)
B, L = raw_wav.shape
sample_size = min(1000, L) # Sample 1000 points or entire length if smaller
# Sample from beginning, middle, and end
indices = torch.cat(
[
torch.arange(min(sample_size // 3, L)),
torch.arange(L // 2, min(L // 2 + sample_size // 3, L)),
torch.arange(max(0, L - sample_size // 3), L),
]
)
sampled_wav = raw_wav[:, indices].cpu().numpy().tobytes()
# Create hash from audio data, shape, and padding mask presence
hash_obj = hashlib.sha256(sampled_wav)
hash_obj.update(str(raw_wav.shape).encode())
hash_obj.update(str(raw_wav.dtype).encode())
if audio_padding_mask is not None:
mask_sample = audio_padding_mask[:, indices].cpu().numpy().tobytes()
hash_obj.update(mask_sample)
hash_obj.update(str(audio_padding_mask.shape).encode())
else:
hash_obj.update(b"no_mask")
return hash_obj.hexdigest()
def get(self, raw_wav: torch.Tensor, audio_padding_mask: torch.Tensor = None):
"""Retrieve cached encoding if available."""
key = self._compute_hash(raw_wav, audio_padding_mask)
if key in self.cache:
self.hits += 1
# Move to end (most recently used)
self.cache.move_to_end(key)
return self.cache[key]
self.misses += 1
return None
def put(self, raw_wav: torch.Tensor, audio_padding_mask: torch.Tensor, value: tuple):
"""Store encoding in cache (on CPU to save GPU memory)."""
key = self._compute_hash(raw_wav, audio_padding_mask)
# Move tensors to CPU for storage
audio_embeds, audio_atts = value
cached_value = (audio_embeds.cpu(), audio_atts.cpu())
# Add to cache
self.cache[key] = cached_value
self.cache.move_to_end(key)
# Evict oldest if over capacity
if len(self.cache) > self.capacity:
self.cache.popitem(last=False)
def clear(self):
"""Clear the cache."""
self.cache.clear()
self.hits = 0
self.misses = 0
def get_stats(self):
"""Get cache statistics."""
total = self.hits + self.misses
hit_rate = self.hits / total if total > 0 else 0
return {
"hits": self.hits,
"misses": self.misses,
"hit_rate": hit_rate,
"size": len(self.cache),
"capacity": self.capacity,
}
class NatureLM(nn.Module, PyTorchModelHubMixin):
def __init__(
self,
*,
llama_path: Path,
beats_path: Path | os.PathLike | None = None,
beats_cfg: BeatsConfig,
freeze_beats: bool = True,
use_audio_Qformer: bool = True,
max_pooling: bool = False,
num_audio_query_token: int = 1,
freeze_audio_QFormer: bool = False,
window_level_Qformer: bool = True,
second_per_window: float = 0.333333,
second_stride: float = 0.333333,
downsample_factor: int = 4,
audio_llama_proj_model: Path | os.PathLike | None = None,
freeze_audio_llama_proj: bool = False,
lora: bool = True,
lora_rank: int = 8,
lora_alpha: int = 32,
lora_dropout: float = 0.1,
flash_attn: Literal["eager", "flash_attention_2"] = "eager",
prompt_template: str = "",
max_txt_len: int = 128,
end_sym: str = "</s>",
device: str = "cuda",
audio_encoding_cache_size: int = 100,
):
super().__init__()
self.audio_encoding_cache = (
AudioEncodingCache(capacity=audio_encoding_cache_size)
if audio_encoding_cache_size > 0
else None
)
self.beats_path = beats_path
self.beats_cfg = beats_cfg
self.use_audio_Qformer = use_audio_Qformer
self.max_pooling = max_pooling
self.window_level_Qformer = window_level_Qformer
self.second_per_window = second_per_window
self.second_stride = second_stride
self.downsample_factor = downsample_factor
self.lora = lora
self.max_txt_len = max_txt_len
self.end_sym = end_sym
self.prompt_template = prompt_template
self.flash_attn = flash_attn
logging.info(f"Llama path: {llama_path}")
logging.info("Loading Llama Tokenizer")
self.llama_tokenizer = AutoTokenizer.from_pretrained(
llama_path, use_fast=False, use_auth_token=auth_token
)
self.llama_tokenizer.add_special_tokens({"pad_token": "[PAD]"})
self.llama_tokenizer.padding_side = "right"
logging.info("Loading Llama Model")
if device == "cpu":
self.llama_model = AutoModelForCausalLM.from_pretrained(
llama_path,
torch_dtype=torch.float32,
attn_implementation="eager",
device_map="cpu",
)
# An issue with tiny-llama is that pad_token_id was set to -1, but
# model.save_pretrained checks generation configs and does not allow -1 as
# pad_token_id
self.llama_model.generation_config.pad_token_id = self.llama_tokenizer.pad_token_id
else:
self.llama_model = AutoModelForCausalLM.from_pretrained(
llama_path,
torch_dtype=torch.bfloat16,
attn_implementation=flash_attn,
)
self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
if self.lora:
for param in self.llama_model.parameters():
param.requires_grad = False
logging.info("Loading LLaMA Done")
self.llama_embed_tokens = self.llama_model.model.embed_tokens
if self.lora:
logging.info("Setting up LoRA for llama model")
self.peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
)
self.llama_model = get_peft_model(self.llama_model, self.peft_config)
self.llama_embed_tokens = self.llama_model.model.model.embed_tokens
self.llama_model.print_trainable_parameters()
logging.info("LoRA Training")
logging.info("Loading BEATs Model")
self.beats = BEATs(cfg=BEATsConfig(dict(self.beats_cfg)))
if self.beats_path:
beats_ckpt = universal_torch_load(
self.beats_path, cache_mode="none", map_location="cpu"
)
self.beats.load_state_dict(beats_ckpt["model"])
self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim)
if freeze_beats:
for param in self.beats.parameters():
param.requires_grad = False
self.beats.eval()
logging.info("freeze BEATs")
if self.use_audio_Qformer:
self.audio_Qformer, self.audio_query_tokens = self.init_audio_Qformer(
num_query_token=num_audio_query_token,
audio_width=self.beats.cfg.encoder_embed_dim,
)
self.audio_Qformer.bert.embeddings.word_embeddings = None
self.audio_Qformer.bert.embeddings.position_embeddings = None
for layer in self.audio_Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.audio_Qformer.cls = None
if freeze_audio_QFormer:
for param in self.audio_Qformer.parameters():
param.requires_grad = False
self.audio_Qformer.eval()
self.audio_query_tokens.requires_grad = False
logging.info("freeze audio QFormer")
logging.info("Loading audio LLAMA proj")
self.audio_llama_proj = nn.Linear(
self.audio_Qformer.config.hidden_size,
self.llama_model.config.hidden_size,
)
if audio_llama_proj_model:
logging.info(f"Loading audio LLAMA proj from {audio_llama_proj_model}")
# audio_llama_proj_weight = torch.load(audio_llama_proj_model, map_location="cpu")
audio_llama_proj_weight = universal_torch_load(
audio_llama_proj_model, cache_mode="use", map_location="cpu"
)
self.load_state_dict(audio_llama_proj_weight["model"], strict=False)
if freeze_audio_llama_proj:
for param in self.audio_llama_proj.parameters():
param.requires_grad = False
self.audio_llama_proj.eval()
logging.info("freeze audio LLAMA proj")
elif self.max_pooling:
hidden_size = (
768
if self.aves
else 768
if self.htsat
else 1024
if self.aves_large
else self.beats.cfg.encoder_embed_dim
)
self.audio_llama_proj = nn.Linear(
hidden_size, self.llama_model.config.hidden_size
) # Single embedding, just project to LLM.
elif self.htsat:
self.audio_llama_proj = nn.Linear(
512, self.llama_model.config.hidden_size
) # Single embedding, just project to LLM.
else:
# feel free to add other aligners here
raise NotImplementedError("Have to use audio qformer")
self.config: ModelConfig = None # set this in from_config
@classmethod
def from_config(cls, config: ModelConfig):
model = cls(
llama_path=config.llama_path,
beats_path=config.beats_path,
freeze_beats=config.freeze_beats,
use_audio_Qformer=config.use_audio_Qformer,
max_pooling=config.max_pooling,
num_audio_query_token=config.num_audio_query_token,
freeze_audio_QFormer=config.freeze_audio_QFormer,
window_level_Qformer=config.window_level_Qformer,
second_per_window=config.second_per_window,
second_stride=config.second_stride,
downsample_factor=config.downsample_factor,
audio_llama_proj_model=config.audio_llama_proj_model,
freeze_audio_llama_proj=config.freeze_audio_llama_proj,
lora=config.lora,
lora_rank=config.lora_rank,
lora_alpha=config.lora_alpha,
lora_dropout=config.lora_dropout,
prompt_template=config.prompt_template,
max_txt_len=config.max_txt_len,
end_sym=config.end_sym,
flash_attn=config.flash_attn,
device=config.device,
)
model.config = config
ckpt_path = config.ckpt
if ckpt_path:
logging.info(f"⏳ Load NatureLM ckpt from: {ckpt_path}")
ckpt = universal_torch_load(ckpt_path, cache_mode="use", map_location="cpu")
model.load_state_dict(ckpt["model"], strict=False)
logging.info("✅ Finished loading from ckpt")
return model
def _save_to_local(
self,
output_dir: Union[str, os.PathLike],
use_distributed: bool = False,
drop_untrained_params: bool = False,
) -> None:
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# Save the config
config_path = output_dir / "model_config.yaml"
save_config_as_yaml(self.config, config_path)
# Save the model
model_path = output_dir / "model.pt"
save_model_checkpoint(
self,
model_path,
drop_untrained_params=drop_untrained_params,
use_distributed=use_distributed,
)
# Save the tokenizer and llama model
tokenizer_path = output_dir / "llama"
self.llama_tokenizer.save_pretrained(tokenizer_path)
self.llama_model.save_pretrained(tokenizer_path)
# Save the audio model
if self.beats_path:
beats_path = output_dir / "beats.pt"
save_model_checkpoint(
self.beats,
beats_path,
drop_untrained_params=drop_untrained_params,
cfg=self.beats_cfg,
)
# Save the audio projection
audio_llama_proj_path = output_dir / "audio_llama_proj.pt"
save_model_checkpoint(
self.audio_llama_proj,
audio_llama_proj_path,
drop_untrained_params=drop_untrained_params,
)
@staticmethod
def init_audio_Qformer(num_query_token, audio_width, num_hidden_layers=2):
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
encoder_config.num_hidden_layers = num_hidden_layers
encoder_config.encoder_width = audio_width
# insert cross-attention layer every other block
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = 1
encoder_config.query_length = num_query_token
Qformer = BertLMHeadModel(config=encoder_config)
query_tokens = nn.Parameter(torch.zeros(1, num_query_token, encoder_config.hidden_size))
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
return Qformer, query_tokens
@property
def device(self):
return list(self.parameters())[0].device
def _encode_auditory_feature(self, audio_embeds, audio_pad_mask):
if self.max_pooling:
# Max Pooling logic to reduce sequence length
# Apply 1D Max Pooling along the time dimension
audio_embeds = F.max_pool1d(
audio_embeds.transpose(1, 2),
kernel_size=self.downsample_factor,
stride=self.downsample_factor,
).transpose(1, 2)
audio_embeds = self.audio_llama_proj(audio_embeds)
# print("audio pad mask is", audio_pad_mask)
audio_atts = ~audio_pad_mask
# Adjust the padding mask using max pooling
audio_atts = F.max_pool1d(
audio_atts.unsqueeze(1).float(),
kernel_size=self.downsample_factor,
stride=self.downsample_factor,
).squeeze(1)
audio_atts = audio_atts > 0
# print(f"audio pad mask shape after pooling: {audio_atts.shape}")
# print("audio pad mask post", audio_atts)
elif self.use_audio_Qformer:
# Q-Former logic
audio_embeds = self.ln_audio(audio_embeds)
# Generate attention mask
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
audio_embeds.device
)
if self.window_level_Qformer:
B, T, C = audio_embeds.shape # batch, T, Channels
kernel = round(
1500 * self.second_per_window / 30.0
) # 160 ms patches; calculate kernel size
stride = round(1500 * self.second_stride / 30.0) # Calculate stride size
kernel = (1, kernel)
stride = (1, stride)
# Transpose and unfold audio embeddings to create overlapping windows
audio_embeds_tr = audio_embeds.transpose(1, 2).unsqueeze(2)
audio_embeds_overlap = F.unfold(
audio_embeds_tr,
kernel_size=kernel,
dilation=1,
padding=0,
stride=stride,
)
_, _, L = audio_embeds_overlap.shape
audio_embeds_overlap = audio_embeds_overlap.view(B, -1, kernel[1], L)
audio_embeds_overlap = torch.permute(
audio_embeds_overlap, [0, 3, 2, 1]
) # (B, num_windows, kernel_size, C)
audio_embeds = audio_embeds_overlap.reshape(-1, kernel[1], C)
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
audio_embeds.device
)
# Q-Former mechanism
query_tokens = self.audio_query_tokens.expand(audio_embeds.shape[0], -1, -1)
query_output = self.audio_Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=audio_embeds,
encoder_attention_mask=audio_atts,
return_dict=True,
)
audio_embeds = self.audio_llama_proj(query_output.last_hidden_state)
if self.window_level_Qformer:
audio_embeds = audio_embeds.view(B, -1, audio_embeds.size(2)).contiguous()
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
audio_embeds.device
)
elif self.htsat:
# HTSAT processing
audio_embeds = self.ln_audio(audio_embeds)
audio_embeds = self.audio_llama_proj(audio_embeds).reshape(
-1, 30, self.llama_model.config.hidden_size
)
audio_atts = torch.ones(audio_embeds.size()[:-1], dtype=torch.long).to(
audio_embeds.device
)
else:
raise NotImplementedError("no audio qformer or max pooling")
return audio_embeds, audio_atts
def encode_audio(self, raw_wav, audio_padding_mask=None):
# Only use cache during inference (not training)
if self.audio_encoding_cache is not None and not self.training:
cached_result = self.audio_encoding_cache.get(raw_wav, audio_padding_mask)
if cached_result is not None:
print("#### Audio encoding cache hit ####")
# Move cached tensors back to the model's device
audio_embeds, audio_atts = cached_result
return audio_embeds.to(self.device), audio_atts.to(self.device)
# Compute encoding if not cached
with torch.autocast(self.device.type, dtype=torch.bfloat16):
audio_embeds, audio_pad_mask = self.beats(raw_wav, padding_mask=audio_padding_mask)
result = self._encode_auditory_feature(
audio_embeds=audio_embeds, audio_pad_mask=audio_pad_mask
)
# Store in cache if enabled and in inference mode
if self.audio_encoding_cache is not None and not self.training:
self.audio_encoding_cache.put(raw_wav, audio_padding_mask, result)
return result
def clear_audio_embed_cache(self):
"""Clear the audio encoding cache."""
if self.audio_encoding_cache is not None:
self.audio_encoding_cache.clear()
def prompt_wrap(self, audio_embeds, audio_atts, prompt: list[str]):
"""Merge audio embeddings with embeddings of the tokens in the prompt.
Args:
audio_embeds (list): List of tensors of audio embeddings.
audio_atts (list): List of tensors of audio padding masks.
prompt (list): List of strings with the prompt for each sample. Each prompt
should contain the placeholder(s) "<AudioHere>" to indicate where the
audio embeddings should be inserted.
Returns:
tuple: A tuple containing the wrapped audio embeddings and padding masks.
"""
def interleave_lists(longer: list, shorter: list) -> list:
"""Interleave two lists where the first list is one element longer.
Args:
longer (list): The first list with length n.
shorter (list): The second list with length n-1.
Returns:
list: A new list with elements interleaved from longer and shorter.
Example:
>>> interleave_lists(['a1', 'a2', 'a3'], ['b1', 'b2'])
['a1', 'b1', 'a2', 'b2', 'a3']
"""
interleaved_list = []
for i in range(len(shorter)):
interleaved_list.append(longer[i])
interleaved_list.append(shorter[i])
interleaved_list.append(longer[-1]) # last element is from longer
return interleaved_list
device = audio_embeds[0].device
wrapped_embeds_list = []
wrapped_atts_list = []
batch_size = len(prompt)
for i in range(batch_size):
prompt_parts = prompt[i].split("<AudioHere>")
wrapped_embeds = []
wrapped_atts = []
for part in prompt_parts:
tokens = self.llama_tokenizer(
part, return_tensors="pt", add_special_tokens=False
).to(device)
part_embeds = self.llama_embed_tokens(tokens.input_ids).squeeze(0)
part_atts = tokens.attention_mask.squeeze(0)
wrapped_embeds.append(part_embeds)
wrapped_atts.append(part_atts)
# Process each element in the batch to remove padding
if self.max_pooling:
audio_embeds[i] = list(audio_embeds[i].unbind(0))
audio_atts[i] = list(audio_atts[i].unbind(0))
for j in range(len(audio_embeds[i])):
audio_embeds[i][j] = audio_embeds[i][j][audio_atts[i][j]]
audio_atts[i][j] = audio_atts[i][j][audio_atts[i][j]]
# Interleave wrapped_embeds and audio_embeds using interleave_lists
wrapped_embeds = interleave_lists(wrapped_embeds, audio_embeds[i])
wrapped_atts = interleave_lists(wrapped_atts, audio_atts[i])
wrapped_embeds = torch.cat(wrapped_embeds, dim=0)
wrapped_atts = torch.cat(wrapped_atts, dim=0)
wrapped_embeds_list.append(wrapped_embeds)
wrapped_atts_list.append(wrapped_atts)
wrapped_embeds = pad_sequence(wrapped_embeds_list, batch_first=True)
wrapped_atts = pad_sequence(wrapped_atts_list, batch_first=True)
return wrapped_embeds, wrapped_atts
def forward(self, samples, verbose=True):
# Prepare prompts
prompt = samples["prompt"]
prompt = [self.prompt_template.format(p) for p in prompt]
# Use audio/audio encoder to encode audio/audio
raw_wav = samples.get("raw_wav", None)
audio_padding_mask = samples.get("padding_mask", None)
audio_embeds, audio_atts = self.encode_audio(raw_wav, audio_padding_mask)
audio_chunk_sizes = samples["audio_chunk_sizes"]
split_audio_embeds = list(torch.split(audio_embeds, audio_chunk_sizes, dim=0))
split_audio_atts = list(torch.split(audio_atts, audio_chunk_sizes, dim=0))
# Wrap audio_embeds with prompts
audio_embeds, audio_atts = self.prompt_wrap(split_audio_embeds, split_audio_atts, prompt)
# Prepare inputs for LLM
text = [t + self.end_sym for t in samples["text"]]
to_regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False,
).to(audio_embeds.device)
to_regress_embeds = self.llama_embed_tokens(to_regress_tokens.input_ids)
# Prepare targets
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
)
batch_size = audio_embeds.size(0)
# BOS token embeddings
bos_token_id = self.llama_tokenizer.bos_token_id
bos = torch.full(
(batch_size, 1), bos_token_id, dtype=torch.long, device=audio_embeds.device
)
bos_embeds = self.llama_embed_tokens(bos)
# Prepare lists to collect per-sample embeddings, attention masks, and targets
inputs_embeds_list = []
attention_mask_list = []
targets_list = []
for i in range(batch_size):
# Extract non-padded audio embeddings and attention mask
audio_embed = audio_embeds[i][audio_atts[i].bool()]
audio_att = audio_atts[i][audio_atts[i].bool()]
# Extract non-padded text embeddings and attention mask
text_embed = to_regress_embeds[i][to_regress_tokens.attention_mask[i].bool()]
text_att = to_regress_tokens.attention_mask[i][
to_regress_tokens.attention_mask[i].bool()
]
# Extract corresponding targets for the text tokens
target = targets[i][to_regress_tokens.attention_mask[i].bool()]
# Concatenate embeddings: BOS token, audio embeddings, text embeddings
input_embeds = torch.cat([bos_embeds[i], audio_embed, text_embed], dim=0)
# Concatenate attention masks: BOS token mask, audio attention mask, text attention mask
att_mask = torch.cat(
[
torch.ones(1, device=audio_embeds.device, dtype=audio_att.dtype),
audio_att,
text_att,
],
dim=0,
)
# Create targets: Ignore index (-100) for BOS and audio tokens, actual targets for text tokens
ignore_targets = torch.full(
(1 + audio_embed.size(0),),
-100,
device=audio_embeds.device,
dtype=targets.dtype,
)
sample_targets = torch.cat([ignore_targets, target], dim=0)
# Append to lists
inputs_embeds_list.append(input_embeds)
attention_mask_list.append(att_mask)
targets_list.append(sample_targets)
# Pad sequences to the maximum length in the batch
inputs_embeds_padded = pad_sequence(inputs_embeds_list, batch_first=True)
attention_mask_padded = pad_sequence(attention_mask_list, batch_first=True, padding_value=0)
targets_padded = pad_sequence(targets_list, batch_first=True, padding_value=-100)
# Now use the padded embeddings, attention masks, and targets in the model
with torch.autocast(self.device.type, dtype=torch.bfloat16):
outputs = self.llama_model(
inputs_embeds=inputs_embeds_padded,
attention_mask=attention_mask_padded,
return_dict=True,
labels=targets_padded,
)
loss = outputs.loss # Original batch loss
# Compute per-example loss
nvocab = self.llama_model.config.vocab_size
logits = outputs.logits
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = targets_padded[..., 1:].contiguous()
# Compute loss per token
loss_fct_per_example = CrossEntropyLoss(reduction="none")
loss_per_token = loss_fct_per_example(
shift_logits.view(-1, nvocab), # Flatten to [batch_size * (seq_len-1), vocab_size]
shift_labels.view(-1), # Flatten to [batch_size * (seq_len-1)]
)
loss_per_token = loss_per_token.view(
shift_labels.size()
) # Reshape back to [batch_size, seq_len-1]
# Create mask
mask = shift_labels != -100 # [batch_size, seq_len-1]
# Apply mask to loss_per_token
loss_per_token = loss_per_token * mask.float()
# Compute per-example loss
loss_per_example = loss_per_token.sum(dim=1) / mask.sum(dim=1).clamp(min=1)
if verbose:
# Calculate predictions
predicted_tokens = shift_logits.argmax(dim=-1) # [batch_size, seq_len-1]
# Compute per-example correct counts
correct_per_sample = (
((predicted_tokens == shift_labels) & mask).sum(dim=1).float()
) # [batch_size]
total_tokens_per_sample = mask.sum(dim=1).float() # [batch_size]
# Total correct and total tokens across the batch
correct = correct_per_sample.sum()
total = total_tokens_per_sample.sum()
return {
"loss": loss,
"correct": correct,
"total": total,
"per_example_loss": loss_per_example,
"correct_per_sample": correct_per_sample,
"total_per_sample": total_tokens_per_sample,
}
return {"loss": loss, "per_example_loss": loss_per_example}
def model_merging_scaling(self, merging_alpha, adapter_name="default"):
"""
Performs model merging with the base model by adjusting the scaling of the LoRA adapters as described in
"Model Merging Improves Zero-Shot Generalization in Bioacoustic Foundation Models"
(https://arxiv.org/abs/2511.05171).
The best value for alpha is task- and dataset-specific, but the paper found alpha values between
0.4 and 0.6 to perform generally well.
Args:
merging_alpha: The merging_alpha used for interpolation.
adapter_name (str): The name of the adapter to rescale when merging.
"""
for module in self.llama_model.modules():
# Check if the module is a LoRA layer and has the specified adapter
if hasattr(module, "r") and isinstance(module.r, dict) and adapter_name in module.r:
module.scaling[adapter_name] = merging_alpha * module.scaling[adapter_name]
@torch.inference_mode()
def generate(self, samples, generate_cfg, prompts) -> list[str]:
merging_alpha = getattr(generate_cfg, "merging_alpha", 1.0)
if merging_alpha != 1.0:
self.model_merging_scaling(merging_alpha)
batch_size = len(prompts)
raw_wav = samples["raw_wav"]
audio_padding_mask = samples.get("padding_mask", None)
audio_embeds, audio_atts = self.encode_audio(raw_wav, audio_padding_mask=audio_padding_mask)
split_audio_embeds = list(torch.split(audio_embeds, samples["audio_chunk_sizes"], dim=0))
split_audio_atts = list(torch.split(audio_atts, samples["audio_chunk_sizes"], dim=0))
audio_embeds, audio_atts = self.prompt_wrap(split_audio_embeds, split_audio_atts, prompts)
bos = (
torch.ones(
[batch_size, 1],
dtype=torch.int32,
device=audio_embeds.device,
)
* self.llama_tokenizer.bos_token_id
)
bos_embeds = self.llama_embed_tokens(bos)
atts_bos = audio_atts[:, :1]
embeds = torch.cat([bos_embeds, audio_embeds], dim=1)
attns = torch.cat([atts_bos, audio_atts], dim=1)
stop_words_ids = [torch.tensor([2]).to(audio_embeds.device)]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
with torch.autocast(self.device.type, dtype=torch.bfloat16):
outputs = self.llama_model.generate( # TODO: Wrap the llama_model with outlines https://outlines-dev.github.io/outlines/reference/models/transformers/
inputs_embeds=embeds.bfloat16(),
max_new_tokens=generate_cfg.max_new_tokens,
stopping_criteria=stopping_criteria,
num_beams=generate_cfg.num_beams,
do_sample=generate_cfg.do_sample,
min_length=generate_cfg.min_length,
temperature=generate_cfg.temperature,
# top_p=generate_cfg.get("top_p", 0.9),
repetition_penalty=generate_cfg.repetition_penalty,
length_penalty=generate_cfg.length_penalty,
attention_mask=attns.bfloat16(),
# prefix_allowed_tokens_fn=prefix_tokens_fn
# logits_processor=None
# constraints=[constraint] if constraint is not None else None
)
text = self.llama_tokenizer.batch_decode(outputs, skip_special_tokens=True)
return text