Spaces:
Sleeping
Sleeping
youssef
commited on
Commit
·
b6710f4
1
Parent(s):
2cc82cb
fixed part 3 backend
Browse files- app.py +53 -26
- gradual/computations.py +139 -18
- gradual/examples/complex.json +43 -3
- gradual/examples/simple.json +17 -3
- gradual/h_categorizer.py +1 -18
- gradual/models.py +19 -6
app.py
CHANGED
|
@@ -1,25 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
cache_dir = "/tmp/hf_cache"
|
| 4 |
os.environ["TRANSFORMERS_CACHE"] = cache_dir
|
| 5 |
os.makedirs(cache_dir, exist_ok=True)
|
| 6 |
|
| 7 |
-
import io
|
| 8 |
-
import json
|
| 9 |
-
import asyncio
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
|
| 12 |
-
import pandas as pd
|
| 13 |
-
import torch
|
| 14 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
| 15 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
-
from fastapi.responses import FileResponse, StreamingResponse, JSONResponse
|
| 17 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 18 |
-
|
| 19 |
-
from relations.predict_bert import predict_relation
|
| 20 |
-
from aba.aba_builder import prepare_aba_plus_framework, build_aba_framework_from_text
|
| 21 |
-
from gradual.computations import compute_gradual_semantics
|
| 22 |
-
from gradual.models import GradualInput, GradualOutput
|
| 23 |
|
| 24 |
# -------------------- Config -------------------- #
|
| 25 |
|
|
@@ -46,6 +45,8 @@ app.add_middleware(
|
|
| 46 |
)
|
| 47 |
|
| 48 |
# -------------------- Endpoints -------------------- #
|
|
|
|
|
|
|
| 49 |
@app.get("/")
|
| 50 |
def root():
|
| 51 |
return {"message": "Argument Mining API is running..."}
|
|
@@ -73,7 +74,8 @@ async def predict_csv_stream(file: UploadFile):
|
|
| 73 |
completed = 0
|
| 74 |
for _, row in df.iterrows():
|
| 75 |
try:
|
| 76 |
-
result = predict_relation(
|
|
|
|
| 77 |
completed += 1
|
| 78 |
payload = {
|
| 79 |
"parent": row["parent"],
|
|
@@ -88,7 +90,6 @@ async def predict_csv_stream(file: UploadFile):
|
|
| 88 |
yield f"data: {json.dumps({'error': str(e), 'parent': row.get('parent'), 'child': row.get('child')})}\n\n"
|
| 89 |
await asyncio.sleep(0)
|
| 90 |
|
| 91 |
-
|
| 92 |
return StreamingResponse(event_generator(), media_type="text/event-stream")
|
| 93 |
|
| 94 |
|
|
@@ -159,14 +160,37 @@ def get_aba_example(filename: str):
|
|
| 159 |
|
| 160 |
# --- Gradual semantics --- #
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
@app.post("/gradual", response_model=GradualOutput)
|
| 163 |
def compute_gradual(input_data: GradualInput):
|
| 164 |
-
"""
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
| 167 |
R=input_data.R,
|
| 168 |
n_samples=input_data.n_samples,
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
)
|
| 171 |
|
| 172 |
|
|
@@ -176,8 +200,10 @@ def list_gradual_examples():
|
|
| 176 |
List all available gradual semantics example files.
|
| 177 |
Each example must be a JSON file with structure:
|
| 178 |
{
|
| 179 |
-
"args": ["A", "B", "C"],
|
| 180 |
-
"relations": [["A", "B"], ["B", "C"]]
|
|
|
|
|
|
|
| 181 |
}
|
| 182 |
"""
|
| 183 |
if not GRADUAL_EXAMPLES_DIR.exists():
|
|
@@ -196,7 +222,7 @@ def list_gradual_examples():
|
|
| 196 |
@app.get("/gradual-examples/{example_name}")
|
| 197 |
def get_gradual_example(example_name: str):
|
| 198 |
"""
|
| 199 |
-
Return the content of a specific gradual example.
|
| 200 |
Example: GET /gradual-examples/simple.json
|
| 201 |
"""
|
| 202 |
file_path = GRADUAL_EXAMPLES_DIR / example_name
|
|
@@ -208,4 +234,5 @@ def get_gradual_example(example_name: str):
|
|
| 208 |
content = json.load(f)
|
| 209 |
return JSONResponse(content=content)
|
| 210 |
except json.JSONDecodeError:
|
| 211 |
-
raise HTTPException(
|
|
|
|
|
|
| 1 |
+
from gradual.models import GradualInput, GradualOutput
|
| 2 |
+
# from gradual.computations import compute_gradual_semantics
|
| 3 |
+
from gradual.computations import compute_gradual_space
|
| 4 |
+
from aba.aba_builder import prepare_aba_plus_framework, build_aba_framework_from_text
|
| 5 |
+
from relations.predict_bert import predict_relation
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
+
from fastapi.responses import FileResponse, StreamingResponse, JSONResponse
|
| 8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 9 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
| 10 |
+
import torch
|
| 11 |
+
import pandas as pd
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
import asyncio
|
| 14 |
+
import json
|
| 15 |
+
import io
|
| 16 |
import os
|
| 17 |
|
| 18 |
cache_dir = "/tmp/hf_cache"
|
| 19 |
os.environ["TRANSFORMERS_CACHE"] = cache_dir
|
| 20 |
os.makedirs(cache_dir, exist_ok=True)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# -------------------- Config -------------------- #
|
| 24 |
|
|
|
|
| 45 |
)
|
| 46 |
|
| 47 |
# -------------------- Endpoints -------------------- #
|
| 48 |
+
|
| 49 |
+
|
| 50 |
@app.get("/")
|
| 51 |
def root():
|
| 52 |
return {"message": "Argument Mining API is running..."}
|
|
|
|
| 74 |
completed = 0
|
| 75 |
for _, row in df.iterrows():
|
| 76 |
try:
|
| 77 |
+
result = predict_relation(
|
| 78 |
+
row["parent"], row["child"], model, tokenizer, device)
|
| 79 |
completed += 1
|
| 80 |
payload = {
|
| 81 |
"parent": row["parent"],
|
|
|
|
| 90 |
yield f"data: {json.dumps({'error': str(e), 'parent': row.get('parent'), 'child': row.get('child')})}\n\n"
|
| 91 |
await asyncio.sleep(0)
|
| 92 |
|
|
|
|
| 93 |
return StreamingResponse(event_generator(), media_type="text/event-stream")
|
| 94 |
|
| 95 |
|
|
|
|
| 160 |
|
| 161 |
# --- Gradual semantics --- #
|
| 162 |
|
| 163 |
+
# @app.post("/gradual", response_model=GradualOutput)
|
| 164 |
+
# def compute_gradual(input_data: GradualInput):
|
| 165 |
+
# """API endpoint to compute Weighted h-Categorizer samples and convex hull."""
|
| 166 |
+
# return compute_gradual_semantics(
|
| 167 |
+
# A=input_data.A,
|
| 168 |
+
# R=input_data.R,
|
| 169 |
+
# n_samples=input_data.n_samples,
|
| 170 |
+
# max_iter=input_data.max_iter
|
| 171 |
+
# )
|
| 172 |
+
|
| 173 |
@app.post("/gradual", response_model=GradualOutput)
|
| 174 |
def compute_gradual(input_data: GradualInput):
|
| 175 |
+
"""
|
| 176 |
+
API endpoint to compute Weighted h-Categorizer samples
|
| 177 |
+
and their convex hull (acceptability degree space).
|
| 178 |
+
"""
|
| 179 |
+
num_args, hull_volume, hull_area, hull_points, samples, axes = compute_gradual_space(
|
| 180 |
+
num_args=input_data.num_args,
|
| 181 |
R=input_data.R,
|
| 182 |
n_samples=input_data.n_samples,
|
| 183 |
+
axes=input_data.axes,
|
| 184 |
+
controlled_args=input_data.controlled_args,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
return GradualOutput(
|
| 188 |
+
num_args=num_args,
|
| 189 |
+
hull_volume=hull_volume,
|
| 190 |
+
hull_area=hull_area,
|
| 191 |
+
hull_points=hull_points,
|
| 192 |
+
samples=samples,
|
| 193 |
+
axes=axes,
|
| 194 |
)
|
| 195 |
|
| 196 |
|
|
|
|
| 200 |
List all available gradual semantics example files.
|
| 201 |
Each example must be a JSON file with structure:
|
| 202 |
{
|
| 203 |
+
# "args": ["A", "B", "C"],
|
| 204 |
+
# "relations": [["A", "B"], ["B", "C"]]
|
| 205 |
+
"num_args": 3,
|
| 206 |
+
"R": [["A", "B"], ["B", "C"], ["C", "A"]],
|
| 207 |
}
|
| 208 |
"""
|
| 209 |
if not GRADUAL_EXAMPLES_DIR.exists():
|
|
|
|
| 222 |
@app.get("/gradual-examples/{example_name}")
|
| 223 |
def get_gradual_example(example_name: str):
|
| 224 |
"""
|
| 225 |
+
Return the content of a specific gradual example file.
|
| 226 |
Example: GET /gradual-examples/simple.json
|
| 227 |
"""
|
| 228 |
file_path = GRADUAL_EXAMPLES_DIR / example_name
|
|
|
|
| 234 |
content = json.load(f)
|
| 235 |
return JSONResponse(content=content)
|
| 236 |
except json.JSONDecodeError:
|
| 237 |
+
raise HTTPException(
|
| 238 |
+
status_code=400, detail="Invalid JSON format in example file")
|
gradual/computations.py
CHANGED
|
@@ -1,21 +1,142 @@
|
|
| 1 |
-
from scipy.spatial import ConvexHull
|
| 2 |
import numpy as np
|
| 3 |
-
from .
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
else:
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
-
return result
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
+
from scipy.spatial import ConvexHull, QhullError
|
| 3 |
+
from .h_categorizer import h_categorizer
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def dict_to_vector(A, d):
|
| 7 |
+
"""Converts a dictionary {arg: value} into a numpy vector following the order of A."""
|
| 8 |
+
return np.array([d[a] for a in A], dtype=float)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def sample_and_compute_X(
|
| 12 |
+
A,
|
| 13 |
+
R,
|
| 14 |
+
epsilon=1e-4,
|
| 15 |
+
max_iter=1000,
|
| 16 |
+
n_samples=10000,
|
| 17 |
+
seed=42,
|
| 18 |
+
controlled_args=None
|
| 19 |
+
):
|
| 20 |
+
"""Generates n_samples random weight vectors and computes corresponding h-Categorizer results."""
|
| 21 |
+
rng = np.random.default_rng(seed)
|
| 22 |
+
X = np.zeros((n_samples, len(A)), dtype=float)
|
| 23 |
+
|
| 24 |
+
for i in range(n_samples):
|
| 25 |
+
w = dict(zip(A, rng.random(len(A))))
|
| 26 |
+
|
| 27 |
+
# Override controlled arguments if specified
|
| 28 |
+
if controlled_args:
|
| 29 |
+
for arg, value in controlled_args.items():
|
| 30 |
+
w[arg] = value
|
| 31 |
+
|
| 32 |
+
HC = h_categorizer(A, R, w, max_iter, epsilon)
|
| 33 |
+
X[i, :] = dict_to_vector(A, HC)
|
| 34 |
+
|
| 35 |
+
return X
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def _safe_hull(points, qhull_opts="QJ", jitter=1e-8):
|
| 39 |
+
"""
|
| 40 |
+
Try to compute a convex hull robustly.
|
| 41 |
+
Uses 'QJ' (joggle) and adds slight random jitter if needed.
|
| 42 |
+
Returns None if still degenerate.
|
| 43 |
+
"""
|
| 44 |
+
try:
|
| 45 |
+
return ConvexHull(points, qhull_options=qhull_opts)
|
| 46 |
+
except QhullError:
|
| 47 |
+
try:
|
| 48 |
+
pts = points + jitter * np.random.randn(*points.shape)
|
| 49 |
+
return ConvexHull(pts, qhull_options=qhull_opts)
|
| 50 |
+
except QhullError:
|
| 51 |
+
return None
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# def compute_gradual_semantics(
|
| 55 |
+
# A,
|
| 56 |
+
# R,
|
| 57 |
+
# n_samples=1000,
|
| 58 |
+
# val_axes=None,
|
| 59 |
+
# controlled_args=None,
|
| 60 |
+
# epsilon=1e-4,
|
| 61 |
+
# max_iter=1000
|
| 62 |
+
# ):
|
| 63 |
+
# """Compute samples and convex hull information for the given argumentation framework."""
|
| 64 |
+
# X_res = sample_and_compute_X(
|
| 65 |
+
# A, R, epsilon, max_iter, n_samples, controlled_args=controlled_args
|
| 66 |
+
# )
|
| 67 |
+
|
| 68 |
+
# # Case 1D
|
| 69 |
+
# if len(A) == 1:
|
| 70 |
+
# axes = [A[0]]
|
| 71 |
+
# hull = _safe_hull(X_res)
|
| 72 |
+
# dim = 1
|
| 73 |
+
# return dim, axes, X_res, hull
|
| 74 |
+
|
| 75 |
+
# # Case 2D
|
| 76 |
+
# if len(A) == 2:
|
| 77 |
+
# axes = A[:2]
|
| 78 |
+
# hull = _safe_hull(X_res)
|
| 79 |
+
# dim = 2
|
| 80 |
+
# return dim, axes, X_res, hull
|
| 81 |
+
|
| 82 |
+
# # Case ≥ 3D → project on chosen axes
|
| 83 |
+
# axes = val_axes if val_axes else A[:3]
|
| 84 |
+
# idx = [A.index(ax) for ax in axes]
|
| 85 |
+
# Xp = X_res[:, idx]
|
| 86 |
+
# hull = _safe_hull(Xp)
|
| 87 |
+
# dim = 3
|
| 88 |
+
# return dim, axes, Xp, hull
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def compute_gradual_space(num_args, R, n_samples, axes=None, controlled_args=None, epsilon=1e-4, max_iter=1000):
|
| 92 |
+
"""
|
| 93 |
+
Compute the convex hull (acceptability degree space) for the weighted h-categorizer.
|
| 94 |
+
Returns (num_args, hull_volume, hull_area, hull_points, samples, axes)
|
| 95 |
+
"""
|
| 96 |
+
# Generate argument labels A, B, C, ...
|
| 97 |
+
A = [chr(ord("A") + i) for i in range(num_args)]
|
| 98 |
+
|
| 99 |
+
# 1. Sample and compute semantics
|
| 100 |
+
X_res = sample_and_compute_X(
|
| 101 |
+
A, R, epsilon, max_iter, n_samples, controlled_args=controlled_args
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# 2. Handle projections depending on argument count
|
| 105 |
+
if num_args == 1:
|
| 106 |
+
dim = 1
|
| 107 |
+
axes_used = [A[0]]
|
| 108 |
+
hull_points = np.array([[np.min(X_res)], [np.max(X_res)]])
|
| 109 |
+
hull_volume = float(np.max(X_res) - np.min(X_res))
|
| 110 |
+
hull_area = None
|
| 111 |
+
return num_args, hull_volume, hull_area, hull_points.tolist(), X_res.tolist(), axes_used
|
| 112 |
+
|
| 113 |
+
if num_args == 2:
|
| 114 |
+
dim = 2
|
| 115 |
+
axes_used = A[:2]
|
| 116 |
+
hull = _safe_hull(X_res)
|
| 117 |
+
if hull is None:
|
| 118 |
+
hull_volume = 0.0
|
| 119 |
+
hull_area = 0.0
|
| 120 |
+
hull_points = []
|
| 121 |
+
else:
|
| 122 |
+
hull_volume = float(hull.volume)
|
| 123 |
+
hull_area = float(hull.area)
|
| 124 |
+
hull_points = hull.points[hull.vertices].tolist()
|
| 125 |
+
return num_args, hull_volume, hull_area, hull_points, X_res.tolist(), axes_used
|
| 126 |
+
|
| 127 |
+
# num_args >= 3
|
| 128 |
+
axes_used = axes if axes else A[:3]
|
| 129 |
+
idx = [A.index(ax) for ax in axes_used]
|
| 130 |
+
Xp = X_res[:, idx]
|
| 131 |
+
|
| 132 |
+
hull = _safe_hull(Xp)
|
| 133 |
+
if hull is None:
|
| 134 |
+
hull_volume = 0.0
|
| 135 |
+
hull_area = 0.0
|
| 136 |
+
hull_points = []
|
| 137 |
else:
|
| 138 |
+
hull_volume = float(hull.volume)
|
| 139 |
+
hull_area = float(hull.area)
|
| 140 |
+
hull_points = hull.points[hull.vertices].tolist()
|
| 141 |
|
| 142 |
+
return num_args, hull_volume, hull_area, hull_points, Xp.tolist(), axes_used
|
|
|
gradual/examples/complex.json
CHANGED
|
@@ -1,4 +1,44 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
-
"
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"num_args": 6,
|
| 3 |
+
"R": [
|
| 4 |
+
[
|
| 5 |
+
"A",
|
| 6 |
+
"B"
|
| 7 |
+
],
|
| 8 |
+
[
|
| 9 |
+
"B",
|
| 10 |
+
"A"
|
| 11 |
+
],
|
| 12 |
+
[
|
| 13 |
+
"A",
|
| 14 |
+
"C"
|
| 15 |
+
],
|
| 16 |
+
[
|
| 17 |
+
"C",
|
| 18 |
+
"D"
|
| 19 |
+
],
|
| 20 |
+
[
|
| 21 |
+
"D",
|
| 22 |
+
"B"
|
| 23 |
+
],
|
| 24 |
+
[
|
| 25 |
+
"E",
|
| 26 |
+
"A"
|
| 27 |
+
],
|
| 28 |
+
[
|
| 29 |
+
"F",
|
| 30 |
+
"E"
|
| 31 |
+
]
|
| 32 |
+
],
|
| 33 |
+
"n_samples": 12000,
|
| 34 |
+
"axes": [
|
| 35 |
+
"A",
|
| 36 |
+
"B",
|
| 37 |
+
"C"
|
| 38 |
+
],
|
| 39 |
+
"controlled_args": {
|
| 40 |
+
"D": 0.42,
|
| 41 |
+
"E": 0.67,
|
| 42 |
+
"F": 0.35
|
| 43 |
+
}
|
| 44 |
+
}
|
gradual/examples/simple.json
CHANGED
|
@@ -1,4 +1,18 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
-
"
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"num_args": 3,
|
| 3 |
+
"R": [
|
| 4 |
+
[
|
| 5 |
+
"A",
|
| 6 |
+
"B"
|
| 7 |
+
],
|
| 8 |
+
[
|
| 9 |
+
"B",
|
| 10 |
+
"C"
|
| 11 |
+
]
|
| 12 |
+
],
|
| 13 |
+
"n_samples": 800,
|
| 14 |
+
"axes": [
|
| 15 |
+
"A",
|
| 16 |
+
"B"
|
| 17 |
+
]
|
| 18 |
+
}
|
gradual/h_categorizer.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import numpy as np
|
| 2 |
|
|
|
|
| 3 |
def build_att(A, R):
|
| 4 |
"""Builds a dictionary listing attackers for each argument."""
|
| 5 |
att_list = {a: [] for a in A}
|
|
@@ -27,21 +28,3 @@ def h_categorizer(A, R, w, max_iter, epsi=1e-4):
|
|
| 27 |
break
|
| 28 |
|
| 29 |
return hc
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def dict_to_vector(A, d):
|
| 33 |
-
"""Converts a dictionary {arg: value} into a numpy vector following the order of A."""
|
| 34 |
-
return np.array([d[a] for a in A], dtype=float)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
def sample_and_compute_X(A, R, epsilon=1e-4, max_iter=1000, n_samples=10000, seed=42):
|
| 38 |
-
"""Generates n_samples random weight vectors and computes corresponding h-Categorizer results."""
|
| 39 |
-
rng = np.random.default_rng(seed)
|
| 40 |
-
X = np.zeros((n_samples, len(A)), dtype=float)
|
| 41 |
-
|
| 42 |
-
for i in range(n_samples):
|
| 43 |
-
w = dict(zip(A, rng.random(len(A))))
|
| 44 |
-
HC = h_categorizer(A, R, w, max_iter, epsilon)
|
| 45 |
-
X[i, :] = dict_to_vector(A, HC)
|
| 46 |
-
|
| 47 |
-
return X
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
|
| 3 |
+
|
| 4 |
def build_att(A, R):
|
| 5 |
"""Builds a dictionary listing attackers for each argument."""
|
| 6 |
att_list = {a: [] for a in A}
|
|
|
|
| 28 |
break
|
| 29 |
|
| 30 |
return hc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gradual/models.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
-
from pydantic import BaseModel
|
| 2 |
-
from typing import List, Tuple, Optional
|
|
|
|
| 3 |
|
| 4 |
class GradualInput(BaseModel):
|
| 5 |
"""
|
|
@@ -26,10 +27,21 @@ class GradualInput(BaseModel):
|
|
| 26 |
"max_iter": 1000
|
| 27 |
}
|
| 28 |
"""
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
class GradualOutput(BaseModel):
|
| 35 |
"""
|
|
@@ -72,3 +84,4 @@ class GradualOutput(BaseModel):
|
|
| 72 |
hull_area: Optional[float]
|
| 73 |
hull_points: List[List[float]]
|
| 74 |
samples: List[List[float]]
|
|
|
|
|
|
| 1 |
+
from pydantic import BaseModel, Field
|
| 2 |
+
from typing import List, Tuple, Dict, Optional
|
| 3 |
+
|
| 4 |
|
| 5 |
class GradualInput(BaseModel):
|
| 6 |
"""
|
|
|
|
| 27 |
"max_iter": 1000
|
| 28 |
}
|
| 29 |
"""
|
| 30 |
+
num_args: int = Field(..., ge=1, le=10,
|
| 31 |
+
description="Number of arguments (|A|)")
|
| 32 |
+
|
| 33 |
+
R: List[Tuple[str, str]
|
| 34 |
+
] = Field(..., description="Attack relations (A->B format)")
|
| 35 |
+
|
| 36 |
+
n_samples: int = Field(
|
| 37 |
+
1000, ge=10, description="Number of samples for convex hull computation")
|
| 38 |
+
|
| 39 |
+
axes: Optional[List[str]] = Field(
|
| 40 |
+
None, description="Chosen arguments for 3D plot axes (X,Y,Z)")
|
| 41 |
+
|
| 42 |
+
controlled_args: Optional[Dict[str, float]] = Field(
|
| 43 |
+
None, description="Values for non-axis arguments")
|
| 44 |
+
|
| 45 |
|
| 46 |
class GradualOutput(BaseModel):
|
| 47 |
"""
|
|
|
|
| 84 |
hull_area: Optional[float]
|
| 85 |
hull_points: List[List[float]]
|
| 86 |
samples: List[List[float]]
|
| 87 |
+
axes: Optional[List[str]] = None
|