Spaces:
Sleeping
Sleeping
| import os | |
| from fastapi import FastAPI | |
| from pydantic import BaseModel | |
| from transformers import pipeline, AutoTokenizer | |
| from langdetect import detect, DetectorFactory | |
| # Ensure consistent language detection results | |
| DetectorFactory.seed = 0 | |
| # Set Hugging Face cache directory to a writable location | |
| os.environ["HF_HOME"] = "/tmp/huggingface" | |
| os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" | |
| os.makedirs(os.environ["HF_HOME"], exist_ok=True) | |
| app = FastAPI() | |
| # Model names | |
| multilingual_model_name = "johndoee/sentiment" | |
| english_model_name = "siebert/sentiment-roberta-large-english" | |
| # Load tokenizer and model for multilingual sentiment analysis | |
| multilingual_tokenizer = AutoTokenizer.from_pretrained(multilingual_model_name) | |
| multilingual_model = pipeline( | |
| "sentiment-analysis", | |
| model=multilingual_model_name, | |
| tokenizer=multilingual_tokenizer | |
| ) | |
| # Load English sentiment model | |
| english_model = pipeline("sentiment-analysis", model=english_model_name) | |
| class SentimentRequest(BaseModel): | |
| text: str | |
| class SentimentResponse(BaseModel): | |
| original_text: str | |
| language_detected: str | |
| sentiment: str | |
| confidence_score: float | |
| def detect_language(text): | |
| try: | |
| return detect(text) | |
| except Exception: | |
| return "unknown" | |
| def home(): | |
| return {"message": "Sentiment Analysis API is running!"} | |
| def analyze_sentiment(request: SentimentRequest): | |
| text = request.text | |
| language = detect_language(text) | |
| # Choose the appropriate model based on detected language | |
| model = english_model if language == "en" else multilingual_model | |
| result = model(text) | |
| return SentimentResponse( | |
| original_text=text, | |
| language_detected=language, | |
| sentiment=result[0]["label"].lower(), | |
| confidence_score=result[0]["score"], | |
| ) | |