Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,40 @@
|
|
| 1 |
import keras
|
| 2 |
import numpy as np
|
| 3 |
import streamlit as st
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import os
|
| 6 |
from huggingface_hub import snapshot_download
|
| 7 |
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def get_prediction(img):
|
| 14 |
x = np.array(img)
|
| 15 |
x = np.expand_dims(x, axis=0)
|
| 16 |
predictions = model.predict(x)
|
| 17 |
return predictions[0,:]
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
st.title("Fake Detection")
|
| 20 |
|
| 21 |
file_name = st.file_uploader("Choose an image...", ['jpg'])
|
|
@@ -24,6 +43,10 @@ if file_name is not None:
|
|
| 24 |
col1, col2 = st.columns(2)
|
| 25 |
|
| 26 |
image = Image.open(file_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
col1.image(image, use_column_width=True)
|
| 28 |
predictions = get_prediction(image)
|
| 29 |
|
|
|
|
| 1 |
import keras
|
| 2 |
import numpy as np
|
| 3 |
import streamlit as st
|
| 4 |
+
import random
|
| 5 |
from PIL import Image
|
| 6 |
import os
|
| 7 |
from huggingface_hub import snapshot_download
|
| 8 |
|
| 9 |
+
def random_crop(img, min_size=160, max_size=2048, ratio=5/8):
|
| 10 |
+
width, height = img.size
|
| 11 |
|
| 12 |
+
crop_width = random.randint(min_size, min(max_size, width))
|
| 13 |
+
crop_height = int(crop_width * ratio)
|
| 14 |
|
| 15 |
+
if crop_height > height:
|
| 16 |
+
crop_height = height
|
| 17 |
+
crop_width = int(crop_height / ratio)
|
| 18 |
+
|
| 19 |
+
left = random.randint(0, width - crop_width)
|
| 20 |
+
top = random.randint(0, height - crop_height)
|
| 21 |
+
right = left + crop_width
|
| 22 |
+
bottom = top + crop_height
|
| 23 |
+
|
| 24 |
+
return img.crop((left, top, right, bottom))
|
| 25 |
+
|
| 26 |
def get_prediction(img):
|
| 27 |
x = np.array(img)
|
| 28 |
x = np.expand_dims(x, axis=0)
|
| 29 |
predictions = model.predict(x)
|
| 30 |
return predictions[0,:]
|
| 31 |
|
| 32 |
+
models = ['DDPM', 'Glide', 'Latent Diffusion', 'Palette', 'Stable Diffusion', 'VQ Diffusion', 'real', 'unseen_fake']
|
| 33 |
+
|
| 34 |
+
local_model_path = snapshot_download(repo_id="ElBeh/ma_basemodel")
|
| 35 |
+
model = keras.models.load_model(local_model_path)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
st.title("Fake Detection")
|
| 39 |
|
| 40 |
file_name = st.file_uploader("Choose an image...", ['jpg'])
|
|
|
|
| 43 |
col1, col2 = st.columns(2)
|
| 44 |
|
| 45 |
image = Image.open(file_name)
|
| 46 |
+
if image.size != (200, 200) or image.mode != 'RGB':
|
| 47 |
+
image = random_crop(image)
|
| 48 |
+
image = image.resize((200, 200))
|
| 49 |
+
|
| 50 |
col1.image(image, use_column_width=True)
|
| 51 |
predictions = get_prediction(image)
|
| 52 |
|