Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
-
# app.py β HTR Space (
|
| 2 |
-
|
| 3 |
import os, time
|
| 4 |
from threading import Thread
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
import torch
|
| 8 |
from transformers import AutoProcessor, AutoModelForImageTextToText, Qwen2_5_VLForConditionalGeneration
|
|
@@ -10,30 +10,47 @@ from reportlab.platypus import SimpleDocTemplate, Paragraph
|
|
| 10 |
from reportlab.lib.styles import getSampleStyleSheet
|
| 11 |
from docx import Document
|
| 12 |
|
| 13 |
-
# ---------------- Constants ----------------
|
| 14 |
-
MAX_MAX_NEW_TOKENS = 2048
|
| 15 |
-
DEFAULT_MAX_NEW_TOKENS = 512
|
| 16 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
-
|
| 18 |
# ---------------- Models ----------------
|
| 19 |
MODEL_PATHS = {
|
| 20 |
-
"Complex
|
| 21 |
-
"
|
| 22 |
-
"
|
| 23 |
}
|
| 24 |
|
|
|
|
|
|
|
| 25 |
_loaded_processors, _loaded_models = {}, {}
|
| 26 |
-
|
|
|
|
| 27 |
for name, (repo_id, cls) in MODEL_PATHS.items():
|
| 28 |
try:
|
| 29 |
processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
|
| 30 |
-
model = cls.from_pretrained(
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
_loaded_processors[name], _loaded_models[name] = processor, model
|
| 34 |
-
print(f"β
{name} ready")
|
| 35 |
except Exception as e:
|
| 36 |
-
print(f"β οΈ Failed {name}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# ---------------- Helpers ----------------
|
| 39 |
def _build_inputs(processor, tokenizer, image: Image.Image, prompt: str):
|
|
@@ -46,31 +63,36 @@ def _build_inputs(processor, tokenizer, image: Image.Image, prompt: str):
|
|
| 46 |
def _decode_text(model, processor, tokenizer, output_ids):
|
| 47 |
for obj in [processor, tokenizer, getattr(model, "tokenizer", None)]:
|
| 48 |
try: return obj.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 49 |
-
except: pass
|
| 50 |
return str(output_ids)
|
| 51 |
|
| 52 |
def _default_prompt(query: str | None) -> str:
|
| 53 |
if query and query.strip(): return query.strip()
|
| 54 |
-
return (
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
# ---------------- OCR ----------------
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
prompt = _default_prompt(query)
|
| 71 |
batch = _build_inputs(processor, tokenizer, image, prompt).to(device)
|
| 72 |
with torch.inference_mode():
|
| 73 |
-
output_ids = model.generate(**batch, max_new_tokens=max_new_tokens
|
|
|
|
| 74 |
return _decode_text(model, processor, tokenizer, output_ids).replace("<|im_end|>", "").strip()
|
| 75 |
|
| 76 |
# ---------------- Export Helpers ----------------
|
|
@@ -93,28 +115,44 @@ def save_as_word(text):
|
|
| 93 |
doc.save("output.docx")
|
| 94 |
return "output.docx"
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
# ---------------- Gradio Interface ----------------
|
| 97 |
-
|
| 98 |
-
.
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
query_input = gr.Textbox(label="Custom Prompt (optional)")
|
| 107 |
-
image_input = gr.Image(type="pil", label="Upload / Capture Image", source="upload")
|
| 108 |
-
submit_btn = gr.Button("π€ Extract Text", elem_classes="submit-btn")
|
| 109 |
-
raw_output = gr.Textbox(label="OCR Output", lines=15, interactive=False, show_copy_button=True)
|
| 110 |
-
pdf_btn = gr.Button("β¬οΈ Download PDF")
|
| 111 |
-
word_btn = gr.Button("β¬οΈ Download Word")
|
| 112 |
-
pdf_file = gr.File(label="PDF File")
|
| 113 |
-
word_file = gr.File(label="Word File")
|
| 114 |
-
|
| 115 |
-
submit_btn.click(fn=ocr_image, inputs=[model_choice, image_input, query_input], outputs=[raw_output])
|
| 116 |
-
pdf_btn.click(fn=save_as_pdf, inputs=[raw_output], outputs=[pdf_file])
|
| 117 |
-
word_btn.click(fn=save_as_word, inputs=[raw_output], outputs=[word_file])
|
| 118 |
|
| 119 |
if __name__ == "__main__":
|
| 120 |
-
demo.queue(max_size=50).launch(
|
|
|
|
| 1 |
+
# app.py β HTR Space (Compact Version)
|
|
|
|
| 2 |
import os, time
|
| 3 |
from threading import Thread
|
| 4 |
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
from PIL import Image
|
| 7 |
import torch
|
| 8 |
from transformers import AutoProcessor, AutoModelForImageTextToText, Qwen2_5_VLForConditionalGeneration
|
|
|
|
| 10 |
from reportlab.lib.styles import getSampleStyleSheet
|
| 11 |
from docx import Document
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# ---------------- Models ----------------
|
| 14 |
MODEL_PATHS = {
|
| 15 |
+
"Model 1 (Complex handwrittings )": ("prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it", Qwen2_5_VLForConditionalGeneration),
|
| 16 |
+
"Model 2 (simple and scanned handwritting )": ("nanonets/Nanonets-OCR-s", Qwen2_5_VLForConditionalGeneration),
|
| 17 |
+
"Model 3 (structured handwritting)": ("Emeritus-21/Finetuned-full-HTR-model", AutoModelForImageTextToText),
|
| 18 |
}
|
| 19 |
|
| 20 |
+
MAX_NEW_TOKENS_DEFAULT = 512
|
| 21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
_loaded_processors, _loaded_models = {}, {}
|
| 23 |
+
|
| 24 |
+
print("π Preloading models into GPU/CPU memory...")
|
| 25 |
for name, (repo_id, cls) in MODEL_PATHS.items():
|
| 26 |
try:
|
| 27 |
processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
|
| 28 |
+
model = cls.from_pretrained(
|
| 29 |
+
repo_id,
|
| 30 |
+
trust_remote_code=True,
|
| 31 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 32 |
+
low_cpu_mem_usage=True
|
| 33 |
+
).to(device).eval()
|
| 34 |
_loaded_processors[name], _loaded_models[name] = processor, model
|
| 35 |
+
print(f"β
{name} ready.")
|
| 36 |
except Exception as e:
|
| 37 |
+
print(f"β οΈ Failed to load {name}: {e}")
|
| 38 |
+
|
| 39 |
+
# ---------------- GPU Warmup ----------------
|
| 40 |
+
@spaces.GPU
|
| 41 |
+
def warmup(progress=gr.Progress(track_tqdm=True)):
|
| 42 |
+
try:
|
| 43 |
+
default_model_choice = next(iter(MODEL_PATHS.keys()))
|
| 44 |
+
processor = _loaded_processors[default_model_choice]
|
| 45 |
+
model = _loaded_models[default_model_choice]
|
| 46 |
+
tokenizer = getattr(processor, "tokenizer", None)
|
| 47 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": "Warmup."}]}]
|
| 48 |
+
chat_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) if tokenizer and hasattr(tokenizer, "apply_chat_template") else "Warmup."
|
| 49 |
+
inputs = processor(text=[chat_prompt], images=None, return_tensors="pt").to(device)
|
| 50 |
+
with torch.inference_mode(): _ = model.generate(**inputs, max_new_tokens=1)
|
| 51 |
+
return f"GPU warm and {default_model_choice} ready."
|
| 52 |
+
except Exception as e:
|
| 53 |
+
return f"Warmup skipped: {e}"
|
| 54 |
|
| 55 |
# ---------------- Helpers ----------------
|
| 56 |
def _build_inputs(processor, tokenizer, image: Image.Image, prompt: str):
|
|
|
|
| 63 |
def _decode_text(model, processor, tokenizer, output_ids):
|
| 64 |
for obj in [processor, tokenizer, getattr(model, "tokenizer", None)]:
|
| 65 |
try: return obj.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 66 |
+
except Exception: pass
|
| 67 |
return str(output_ids)
|
| 68 |
|
| 69 |
def _default_prompt(query: str | None) -> str:
|
| 70 |
if query and query.strip(): return query.strip()
|
| 71 |
+
return (
|
| 72 |
+
"You are a professional Handwritten OCR system.\n"
|
| 73 |
+
"TASK: Read the handwritten image and transcribe the text EXACTLY as written.\n"
|
| 74 |
+
"- Preserve original structure and line breaks.\n"
|
| 75 |
+
"- Keep spacing, bullet points, numbering, and indentation.\n"
|
| 76 |
+
"- Render tables as Markdown tables if present.\n"
|
| 77 |
+
"- Do NOT autocorrect spelling or grammar.\n"
|
| 78 |
+
"- Do NOT merge lines.\n"
|
| 79 |
+
"Return RAW transcription only."
|
| 80 |
+
)
|
| 81 |
|
| 82 |
+
# ---------------- OCR Function ----------------
|
| 83 |
+
@spaces.GPU
|
| 84 |
+
def ocr_image(image: Image.Image, model_choice: str, query: str = None,
|
| 85 |
+
max_new_tokens: int = MAX_NEW_TOKENS_DEFAULT,
|
| 86 |
+
temperature: float = 0.1, top_p: float = 1.0, top_k: int = 0, repetition_penalty: float = 1.0,
|
| 87 |
+
progress=gr.Progress(track_tqdm=True)):
|
| 88 |
+
if image is None: return "Please upload or capture an image."
|
| 89 |
+
if model_choice not in _loaded_models: return f"Invalid model: {model_choice}"
|
| 90 |
+
processor, model, tokenizer = _loaded_processors[model_choice], _loaded_models[model_choice], getattr(_loaded_processors[model_choice], "tokenizer", None)
|
| 91 |
prompt = _default_prompt(query)
|
| 92 |
batch = _build_inputs(processor, tokenizer, image, prompt).to(device)
|
| 93 |
with torch.inference_mode():
|
| 94 |
+
output_ids = model.generate(**batch, max_new_tokens=max_new_tokens, do_sample=False,
|
| 95 |
+
temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
|
| 96 |
return _decode_text(model, processor, tokenizer, output_ids).replace("<|im_end|>", "").strip()
|
| 97 |
|
| 98 |
# ---------------- Export Helpers ----------------
|
|
|
|
| 115 |
doc.save("output.docx")
|
| 116 |
return "output.docx"
|
| 117 |
|
| 118 |
+
def save_as_audio(text):
|
| 119 |
+
text = _safe_text(text)
|
| 120 |
+
if not text: return None
|
| 121 |
+
try:
|
| 122 |
+
from gTTS import gTTS
|
| 123 |
+
tts = gTTS(text)
|
| 124 |
+
tts.save("output.mp3")
|
| 125 |
+
return "output.mp3"
|
| 126 |
+
except Exception as e:
|
| 127 |
+
print(f"gTTS failed: {e}")
|
| 128 |
+
return None
|
| 129 |
+
|
| 130 |
# ---------------- Gradio Interface ----------------
|
| 131 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 132 |
+
gr.Markdown("## βπΎ wilson Handwritten OCR")
|
| 133 |
+
model_choice = gr.Radio(choices=list(MODEL_PATHS.keys()), value=list(MODEL_PATHS.keys())[0], label="Select OCR Model")
|
| 134 |
+
with gr.Tab("πΌ Image Inference"):
|
| 135 |
+
query_input = gr.Textbox(label="Custom Prompt (optional)", placeholder="Leave empty for RAW structured output")
|
| 136 |
+
image_input = gr.Image(type="pil", label="Upload / Capture Handwritten Image", sources=["upload", "webcam"])
|
| 137 |
+
with gr.Accordion("βοΈ Advanced Options", open=False):
|
| 138 |
+
max_new_tokens = gr.Slider(1, 2048, value=MAX_NEW_TOKENS_DEFAULT, step=1, label="Max new tokens")
|
| 139 |
+
temperature = gr.Slider(0.1, 2.0, value=0.1, step=0.05, label="Temperature")
|
| 140 |
+
top_p = gr.Slider(0.05, 1.0, value=1.0, step=0.05, label="Top-p (nucleus)")
|
| 141 |
+
top_k = gr.Slider(0, 1000, value=0, step=1, label="Top-k")
|
| 142 |
+
repetition_penalty = gr.Slider(0.8, 2.0, value=1.0, step=0.05, label="Repetition penalty")
|
| 143 |
+
extract_btn = gr.Button("π€ Extract RAW Text", variant="primary")
|
| 144 |
+
clear_btn = gr.Button("π§Ή Clear")
|
| 145 |
+
raw_output = gr.Textbox(label="π RAW Structured Output (exact as written)", lines=18, show_copy_button=True)
|
| 146 |
+
pdf_btn = gr.Button("β¬οΈ Download as PDF")
|
| 147 |
+
word_btn = gr.Button("β¬οΈ Download as Word")
|
| 148 |
+
audio_btn = gr.Button("π Download as Audio")
|
| 149 |
+
pdf_file, word_file, audio_file = gr.File(label="PDF File"), gr.File(label="Word File"), gr.File(label="Audio File")
|
| 150 |
|
| 151 |
+
extract_btn.click(fn=ocr_image, inputs=[image_input, model_choice, query_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[raw_output], api_name="ocr_image")
|
| 152 |
+
pdf_btn.click(fn=save_as_pdf, inputs=[raw_output], outputs=[pdf_file])
|
| 153 |
+
word_btn.click(fn=save_as_word, inputs=[raw_output], outputs=[word_file])
|
| 154 |
+
audio_btn.click(fn=save_as_audio, inputs=[raw_output], outputs=[audio_file])
|
| 155 |
+
clear_btn.click(fn=lambda: ("", None, "", MAX_NEW_TOKENS_DEFAULT, 0.1, 1.0, 0, 1.0), outputs=[raw_output, image_input, query_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
if __name__ == "__main__":
|
| 158 |
+
demo.queue(max_size=50).launch(show_error=True)
|