import langchain import streamlit as st import pickle as pkl from langchain.chains import RetrievalQAWithSourcesChain from langchain.document_loaders import UnstructuredURLLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma, FAISS from langchain_openai import ChatOpenAI from dotenv import load_dotenv import time load_dotenv("ping.env") api_key=os.getenv("OPENAI_API_KEY") api_base=os.getenv("OPENAI_API_BASE") llm=ChatOpenAI(model_name="google/gemma-3n-e2b-it:free",temperature=0) path="embedmo.pkl" m1=pkl.load(open(path,"rb")) st.title("URL ANALYSER🔗") st.sidebar.title("Give your URls🔗?") mp=st.empty() urs=[] for i in range(3): url=st.sidebar.text_input(f"URL {i+1}🔗") urs.append(url) purs=st.button("gotcha", disabled=not any(url.strip() for url in urs)) if purs: mp.text("Loading..URl..Loader....☑️☑️☑️") sic=UnstructuredURLLoader(urls=urs) docs=sic.load() mp.text("Loading..txt..splitter....☑️☑️☑️") tot=RecursiveCharacterTextSplitter.from_tiktoken_encoder(encoding_name="cl100k_base",chunk_size=512,chunk_overlap=16) doccs=tot.split_documents(docs) mp.text("Loading..VB...☑️☑️☑️") vv=FAISS.from_documents(doccs,m1) r2=vv.as_retriever(search_type="similarity",search_kwargs={"k":4}) mp.text("Loading..Retri....☑️☑️☑️") ra1=RetrievalQAWithSourcesChain.from_chain_type(llm=llm,retriever=r2,chain_type="map_reduce") st.session_state.ra1=ra1 mp.text("DB & Retri Done ✅✅✅") time.sleep(3) query=mp.text_input("UR Question??") if query: if "ra1" not in st.session_state: st.warning("pls give ur urls") else: with st.spinner("Wait for it..."): result=st.session_state.ra1({"question":query},return_only_outputs=True) st.header("Answer") st.subheader(result["answer"]) g = st.button("Source") if g: sources = result.get("sources", "") st.subheader("Sources") for line in sources.split("\n"): st.write(line)