Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Загружаем модель Qwen локально
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
|
| 8 |
+
|
| 9 |
+
def respond(message):
|
| 10 |
+
inputs = tokenizer(message, return_tensors="pt").to(model.device)
|
| 11 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
| 12 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 13 |
+
return response
|
| 14 |
+
|
| 15 |
+
# Создаём интерфейс
|
| 16 |
+
gr.Interface(
|
| 17 |
+
fn=respond,
|
| 18 |
+
inputs=gr.Textbox(label="Ваше сообщение"),
|
| 19 |
+
outputs=gr.Textbox(label="Qwen отвечает"),
|
| 20 |
+
title="Qwen Прокси",
|
| 21 |
+
description="Это API-прокси для Janotaro.ai"
|
| 22 |
+
).launch()
|