Spaces:
Runtime error
Runtime error
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq | |
| from datasets import load_dataset, load_from_disk | |
| from evaluate import load | |
| import torch | |
| import os | |
| # Use a pipeline as a high-level helper | |
| from transformers import pipeline | |
| pipe = pipeline("text-generation", model="openaccess-ai-collective/minotaur-15b") | |
| # Load model directly | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| tokenizer = AutoTokenizer.from_pretrained("openaccess-ai-collective/minotaur-15b") | |
| model = AutoModelForCausalLM.from_pretrained("openaccess-ai-collective/minotaur-15b") | |
| model_id = "your_model_id" # Replace with your model ID | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
| data_collator = DataCollatorForSeq2Seq(tokenizer, model=model) | |
| def generate_answer(question, file_path): | |
| if os.path.exists(file_path): | |
| # Load data from file | |
| if file_path.endswith(".csv"): | |
| data = pd.read_csv(file_path) | |
| elif file_path.endswith(".json"): | |
| data = json.load(open(file_path)) | |
| else: | |
| data = open(file_path, "r").read() | |
| else: | |
| data = "" | |
| prompt = f""" | |
| Answer the question based on the provided context: | |
| Question: {question} | |
| Context: {data} | |
| Answer: | |
| """ | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| input_ids = inputs.input_ids.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
| attention_mask = inputs.attention_mask.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
| output = model.generate(input_ids=input_ids, attention_mask=attention_mask) | |
| answer = tokenizer.decode(output[0], skip_special_tokens=True) | |
| return answer | |
| def main(): | |
| question = input("Enter your question: ") | |
| file_path = input("Enter the file path (optional): ") | |
| answer = generate_answer(question, file_path) | |
| print(f"Answer: {answer}") | |
| if __name__ == "__main__": | |
| main() |