Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq
|
| 3 |
+
from datasets import load_dataset, load_from_disk
|
| 4 |
+
from evaluate import load
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Use a pipeline as a high-level helper
|
| 9 |
+
from transformers import pipeline
|
| 10 |
+
|
| 11 |
+
pipe = pipeline("text-generation", model="openaccess-ai-collective/minotaur-15b")
|
| 12 |
+
# Load model directly
|
| 13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 14 |
+
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained("openaccess-ai-collective/minotaur-15b")
|
| 16 |
+
model = AutoModelForCausalLM.from_pretrained("openaccess-ai-collective/minotaur-15b")
|
| 17 |
+
model_id = "your_model_id" # Replace with your model ID
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
| 20 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
| 21 |
+
|
| 22 |
+
def generate_answer(question, file_path):
|
| 23 |
+
if os.path.exists(file_path):
|
| 24 |
+
# Load data from file
|
| 25 |
+
if file_path.endswith(".csv"):
|
| 26 |
+
data = pd.read_csv(file_path)
|
| 27 |
+
elif file_path.endswith(".json"):
|
| 28 |
+
data = json.load(open(file_path))
|
| 29 |
+
else:
|
| 30 |
+
data = open(file_path, "r").read()
|
| 31 |
+
else:
|
| 32 |
+
data = ""
|
| 33 |
+
|
| 34 |
+
prompt = f"""
|
| 35 |
+
Answer the question based on the provided context:
|
| 36 |
+
|
| 37 |
+
Question: {question}
|
| 38 |
+
|
| 39 |
+
Context: {data}
|
| 40 |
+
|
| 41 |
+
Answer:
|
| 42 |
+
"""
|
| 43 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 44 |
+
input_ids = inputs.input_ids.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
| 45 |
+
attention_mask = inputs.attention_mask.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
| 46 |
+
output = model.generate(input_ids=input_ids, attention_mask=attention_mask)
|
| 47 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 48 |
+
return answer
|
| 49 |
+
|
| 50 |
+
def main():
|
| 51 |
+
question = input("Enter your question: ")
|
| 52 |
+
file_path = input("Enter the file path (optional): ")
|
| 53 |
+
answer = generate_answer(question, file_path)
|
| 54 |
+
print(f"Answer: {answer}")
|
| 55 |
+
|
| 56 |
+
if __name__ == "__main__":
|
| 57 |
+
main()
|