Update inference_cli.py
Browse files- inference_cli.py +83 -3
inference_cli.py
CHANGED
|
@@ -211,7 +211,37 @@ def save_frames_to_png(frames_tensor, output_dir, base_name, debug=False):
|
|
| 211 |
print(f"✅ PNG saving completed: {total} files in '{output_dir}'")
|
| 212 |
|
| 213 |
|
| 214 |
-
def _worker_process(proc_idx, device_id, frames_np, shared_args, return_queue):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
"""Worker process that performs upscaling on a slice of frames using a dedicated GPU."""
|
| 216 |
# 1. Limit CUDA visibility to the chosen GPU BEFORE importing torch-heavy deps
|
| 217 |
os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id)
|
|
@@ -251,7 +281,52 @@ def _worker_process(proc_idx, device_id, frames_np, shared_args, return_queue):
|
|
| 251 |
return_queue.put((proc_idx, result_tensor.cpu().numpy()))
|
| 252 |
|
| 253 |
|
| 254 |
-
def _gpu_processing(frames_tensor, device_list, args):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
"""Split frames and process them in parallel on multiple GPUs."""
|
| 256 |
num_devices = len(device_list)
|
| 257 |
# split frames tensor along time dimension
|
|
@@ -431,6 +506,9 @@ def main():
|
|
| 431 |
finally:
|
| 432 |
print(f"🧹 Process {os.getpid()} terminating - VRAM will be automatically freed")
|
| 433 |
|
|
|
|
|
|
|
|
|
|
| 434 |
def run_inference_logic(args, progress_callback=None):
|
| 435 |
"""
|
| 436 |
Função principal que executa o pipeline de upscaling.
|
|
@@ -484,6 +562,8 @@ def run_inference_logic(args, progress_callback=None):
|
|
| 484 |
return result_tensor, original_fps, generation_time, len(frames_tensor)
|
| 485 |
|
| 486 |
|
|
|
|
|
|
|
| 487 |
# FUNÇÃO MAIN ORIGINAL (agora um wrapper)
|
| 488 |
def main():
|
| 489 |
"""Função principal do CLI"""
|
|
@@ -512,4 +592,4 @@ def main():
|
|
| 512 |
|
| 513 |
# Ponto de entrada para execução via linha de comando
|
| 514 |
if __name__ == "__main__":
|
| 515 |
-
main()
|
|
|
|
| 211 |
print(f"✅ PNG saving completed: {total} files in '{output_dir}'")
|
| 212 |
|
| 213 |
|
| 214 |
+
def _worker_process(proc_idx, device_id, frames_np, shared_args, return_queue, progress_queue=None): # Adicionado progress_queue
|
| 215 |
+
"""Worker que executa o upscaling em uma GPU dedicada."""
|
| 216 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id)
|
| 217 |
+
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "backend:cudaMallocAsync")
|
| 218 |
+
|
| 219 |
+
import torch
|
| 220 |
+
from src.core.model_manager import configure_runner
|
| 221 |
+
from src.core.generation import generation_loop
|
| 222 |
+
|
| 223 |
+
frames_tensor = torch.from_numpy(frames_np).to(torch.float16)
|
| 224 |
+
|
| 225 |
+
# Cria uma função de callback local que envia o progresso para a fila
|
| 226 |
+
local_progress_callback = None
|
| 227 |
+
if progress_queue:
|
| 228 |
+
def callback_wrapper(batch_idx, total_batches, current_frames, message):
|
| 229 |
+
progress_queue.put((batch_idx, total_batches, message))
|
| 230 |
+
local_progress_callback = callback_wrapper
|
| 231 |
+
|
| 232 |
+
runner = configure_runner(shared_args["model"], shared_args["model_dir"], shared_args["preserve_vram"], shared_args["debug"])
|
| 233 |
+
|
| 234 |
+
result_tensor = generation_loop(
|
| 235 |
+
runner=runner, images=frames_tensor, cfg_scale=shared_args["cfg_scale"],
|
| 236 |
+
seed=shared_args["seed"], res_w=shared_args["res_w"], batch_size=shared_args["batch_size"],
|
| 237 |
+
preserve_vram=shared_args["preserve_vram"], temporal_overlap=shared_args["temporal_overlap"],
|
| 238 |
+
debug=shared_args["debug"],
|
| 239 |
+
progress_callback=local_progress_callback # Passa o callback para o generation_loop
|
| 240 |
+
)
|
| 241 |
+
return_queue.put((proc_idx, result_tensor.cpu().numpy()))
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def _worker_process1(proc_idx, device_id, frames_np, shared_args, return_queue):
|
| 245 |
"""Worker process that performs upscaling on a slice of frames using a dedicated GPU."""
|
| 246 |
# 1. Limit CUDA visibility to the chosen GPU BEFORE importing torch-heavy deps
|
| 247 |
os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id)
|
|
|
|
| 281 |
return_queue.put((proc_idx, result_tensor.cpu().numpy()))
|
| 282 |
|
| 283 |
|
| 284 |
+
def _gpu_processing(frames_tensor, device_list, args, progress_callback=None): # Adicionado progress_callback
|
| 285 |
+
"""Divide os frames e os processa em paralelo em múltiplas GPUs."""
|
| 286 |
+
num_devices = len(device_list)
|
| 287 |
+
chunks = torch.chunk(frames_tensor, num_devices, dim=0)
|
| 288 |
+
|
| 289 |
+
manager = mp.Manager()
|
| 290 |
+
return_queue = manager.Queue()
|
| 291 |
+
progress_queue = manager.Queue() if progress_callback else None # Cria a fila de progresso
|
| 292 |
+
workers = []
|
| 293 |
+
|
| 294 |
+
shared_args = {
|
| 295 |
+
"model": args.model, "model_dir": args.model_dir or "./models/SEEDVR2",
|
| 296 |
+
"preserve_vram": args.preserve_vram, "debug": args.debug, "cfg_scale": 1.0,
|
| 297 |
+
"seed": args.seed, "res_w": args.resolution, "batch_size": args.batch_size, "temporal_overlap": 0,
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
for idx, (device_id, chunk_tensor) in enumerate(zip(device_list, chunks)):
|
| 301 |
+
p = mp.Process(target=_worker_process, args=(idx, device_id, chunk_tensor.cpu().numpy(), shared_args, return_queue, progress_queue))
|
| 302 |
+
p.start()
|
| 303 |
+
workers.append(p)
|
| 304 |
+
|
| 305 |
+
results_np = [None] * num_devices
|
| 306 |
+
collected = 0
|
| 307 |
+
total_batches_per_worker = -1 # Para calcular o progresso total
|
| 308 |
+
while collected < num_devices:
|
| 309 |
+
# Verifica as duas filas (resultado e progresso) de forma não-bloqueante
|
| 310 |
+
if progress_queue and not progress_queue.empty():
|
| 311 |
+
batch_idx, total_batches, message = progress_queue.get()
|
| 312 |
+
if total_batches_per_worker == -1: total_batches_per_worker = total_batches
|
| 313 |
+
total_progress = (collected + (batch_idx / total_batches_per_worker)) / num_devices
|
| 314 |
+
progress_callback(total_progress, desc=f"GPU {collected+1}/{num_devices}: {message}")
|
| 315 |
+
|
| 316 |
+
if not return_queue.empty():
|
| 317 |
+
proc_idx, res_np = return_queue.get()
|
| 318 |
+
results_np[proc_idx] = res_np
|
| 319 |
+
collected += 1
|
| 320 |
+
|
| 321 |
+
time.sleep(0.1) # Evita busy-waiting
|
| 322 |
+
|
| 323 |
+
for p in workers: p.join()
|
| 324 |
+
|
| 325 |
+
return torch.from_numpy(np.concatenate(results_np, axis=0)).to(torch.float16)
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def _gpu_processing1(frames_tensor, device_list, args):
|
| 330 |
"""Split frames and process them in parallel on multiple GPUs."""
|
| 331 |
num_devices = len(device_list)
|
| 332 |
# split frames tensor along time dimension
|
|
|
|
| 506 |
finally:
|
| 507 |
print(f"🧹 Process {os.getpid()} terminating - VRAM will be automatically freed")
|
| 508 |
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
|
| 512 |
def run_inference_logic(args, progress_callback=None):
|
| 513 |
"""
|
| 514 |
Função principal que executa o pipeline de upscaling.
|
|
|
|
| 562 |
return result_tensor, original_fps, generation_time, len(frames_tensor)
|
| 563 |
|
| 564 |
|
| 565 |
+
|
| 566 |
+
|
| 567 |
# FUNÇÃO MAIN ORIGINAL (agora um wrapper)
|
| 568 |
def main():
|
| 569 |
"""Função principal do CLI"""
|
|
|
|
| 592 |
|
| 593 |
# Ponto de entrada para execução via linha de comando
|
| 594 |
if __name__ == "__main__":
|
| 595 |
+
main()
|