Audio-EvalBot / process_interview.py
norhan12's picture
Update process_interview.py
2995e64 verified
import os
import torch
import numpy as np
import uuid
import requests
import time
import json
from pydub import AudioSegment
import wave
from nemo.collections.asr.models import EncDecSpeakerLabelModel
from pinecone import Pinecone, ServerlessSpec
import librosa
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
import re
from typing import Dict, List, Tuple
import logging
# --- Imports for enhanced PDF ---
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
from reportlab.platypus import Image
import io # --- FIX: إضافة import io لـ BytesIO ---
# --- End Imports for enhanced PDF ---
from transformers import AutoTokenizer, AutoModel
import spacy
import google.generativeai as genai
import joblib
from concurrent.futures import ThreadPoolExecutor
from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_RIGHT
import subprocess
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logging.getLogger("nemo_logging").setLevel(logging.ERROR)
logging.getLogger("nemo").setLevel(logging.ERROR)
# Configuration
AUDIO_DIR = "./uploads"
OUTPUT_DIR = "./processed_audio"
os.makedirs(OUTPUT_DIR, exist_ok=True)
# API Keys
PINECONE_KEY = os.getenv("PINECONE_KEY")
ASSEMBLYAI_KEY = os.getenv("ASSEMBLYAI_KEY")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# Initialize services
def initialize_services():
try:
pc = Pinecone(api_key=PINECONE_KEY)
index_name = "interview-speaker-embeddings"
if index_name not in pc.list_indexes().names():
pc.create_index(
name=index_name,
dimension=192,
metric="cosine",
spec=ServerlessSpec(cloud="aws", region="us-east-1")
)
index = pc.Index(index_name)
genai.configure(api_key=GEMINI_API_KEY)
gemini_model = genai.GenerativeModel('gemini-1.5-flash')
return index, gemini_model
except Exception as e:
logger.error(f"Error initializing services: {str(e)}")
raise
index, gemini_model = initialize_services()
# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
def load_speaker_model():
try:
import torch
torch.set_num_threads(5)
model = EncDecSpeakerLabelModel.from_pretrained(
"nvidia/speakerverification_en_titanet_large",
map_location=torch.device('cpu')
)
model.eval()
return model
except Exception as e:
logger.error(f"Model loading failed: {str(e)}")
raise RuntimeError("Could not load speaker verification model")
# Load ML models
def load_models():
speaker_model = load_speaker_model()
nlp = spacy.load("en_core_web_sm")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
llm_model = AutoModel.from_pretrained("distilbert-base-uncased").to(device)
llm_model.eval()
return speaker_model, nlp, tokenizer, llm_model
speaker_model, nlp, tokenizer, llm_model = load_models()
def convert_to_wav(input_path: str, output_dir: str = OUTPUT_DIR) -> str:
try:
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, f"{uuid.uuid4()}.wav")
command = [
'ffmpeg', '-y',
'-i', input_path,
'-vn', # ignore video stream completely
'-acodec', 'pcm_s16le',
'-ar', '16000',
'-ac', '1',
output_path
]
subprocess.run(command, check=True)
size_in_mb = os.path.getsize(output_path) / (1024*1024)
logger.info(f"WAV file size: {size_in_mb:.2f} MB")
return output_path
except Exception as e:
logger.error(f"Audio conversion failed: {str(e)}")
raise
def extract_prosodic_features(audio_path: str, start_ms: int, end_ms: int) -> Dict:
try:
audio = AudioSegment.from_file(audio_path)
segment = audio[start_ms:end_ms]
temp_path = os.path.join(OUTPUT_DIR, f"temp_{uuid.uuid4()}.wav")
segment.export(temp_path, format="wav")
y, sr = librosa.load(temp_path, sr=16000)
pitches = librosa.piptrack(y=y, sr=sr)[0]
pitches = pitches[pitches > 0]
features = {
'duration': (end_ms - start_ms) / 1000,
'mean_pitch': float(np.mean(pitches)) if len(pitches) > 0 else 0.0,
'min_pitch': float(np.min(pitches)) if len(pitches) > 0 else 0.0,
'max_pitch': float(np.max(pitches)) if len(pitches) > 0 else 0.0,
'pitch_sd': float(np.std(pitches)) if len(pitches) > 0 else 0.0,
'intensityMean': float(np.mean(librosa.feature.rms(y=y)[0])),
'intensityMin': float(np.min(librosa.feature.rms(y=y)[0])),
'intensityMax': float(np.max(librosa.feature.rms(y=y)[0])),
'intensitySD': float(np.std(librosa.feature.rms(y=y)[0])),
}
os.remove(temp_path)
return features
except Exception as e:
logger.error(f"Feature extraction failed: {str(e)}")
return {
'duration': 0.0,
'mean_pitch': 0.0,
'min_pitch': 0.0,
'max_pitch': 0.0,
'pitch_sd': 0.0,
'intensityMean': 0.0,
'intensityMin': 0.0,
'intensityMax': 0.0,
'intensitySD': 0.0,
}
def transcribe(audio_path: str) -> Dict:
try:
with open(audio_path, 'rb') as f:
upload_response = requests.post(
"https://api.assemblyai.com/v2/upload",
headers={"authorization": ASSEMBLYAI_KEY},
data=f
)
audio_url = upload_response.json()['upload_url']
transcript_response = requests.post(
"https://api.assemblyai.com/v2/transcript",
headers={"authorization": ASSEMBLYAI_KEY},
json={
"audio_url": audio_url,
"speaker_labels": True,
"filter_profanity": True
}
)
transcript_id = transcript_response.json()['id']
while True:
result = requests.get(
f"https://api.assemblyai.com/v2/transcript/{transcript_id}",
headers={"authorization": ASSEMBLYAI_KEY}
).json()
if result['status'] == 'completed':
return result
elif result['status'] == 'error':
raise Exception(result['error'])
time.sleep(5)
except Exception as e:
logger.error(f"Transcription failed: {str(e)}")
raise
def process_utterance(utterance, full_audio, wav_file):
try:
start = utterance['start']
end = utterance['end']
segment = full_audio[start:end]
temp_path = os.path.join(OUTPUT_DIR, f"temp_{uuid.uuid4()}.wav")
segment.export(temp_path, format="wav")
with torch.no_grad():
embedding = speaker_model.get_embedding(temp_path).cpu().numpy() # Ensure numpy array
# --- FIX: Convert embedding to a flat list for Pinecone query ---
embedding_list = embedding.flatten().tolist()
# --- End FIX ---
query_result = index.query(
vector=embedding_list, # Use the corrected flat list
top_k=1,
include_metadata=True
)
if query_result['matches'] and query_result['matches'][0]['score'] > 0.7:
speaker_id = query_result['matches'][0]['id']
speaker_name = query_result['matches'][0]['metadata']['speaker_name']
else:
speaker_id = f"unknown_{uuid.uuid4().hex[:6]}"
speaker_name = f"Speaker_{speaker_id[-4:]}"
index.upsert([(speaker_id, embedding_list, {"speaker_name": speaker_name})]) # Use corrected list
os.remove(temp_path)
return {
**utterance,
'speaker': speaker_name,
'speaker_id': speaker_id,
'embedding': embedding_list # Store the corrected list
}
except Exception as e:
logger.error(f"Utterance processing failed: {str(e)}", exc_info=True)
return {
**utterance,
'speaker': 'Unknown',
'speaker_id': 'unknown',
'embedding': None
}
def identify_speakers(transcript: Dict, wav_file: str) -> List[Dict]:
try:
full_audio = AudioSegment.from_wav(wav_file)
utterances = transcript['utterances']
with ThreadPoolExecutor(max_workers=5) as executor: # Changed to 5 workers
futures = [
executor.submit(process_utterance, utterance, full_audio, wav_file)
for utterance in utterances
]
results = [f.result() for f in futures]
return results
except Exception as e:
logger.error(f"Speaker identification failed: {str(e)}")
raise
def train_role_classifier(utterances: List[Dict]):
try:
texts = [u['text'] for u in utterances] # تم حذف الـ 'u' الزائدة
vectorizer = TfidfVectorizer(max_features=500, ngram_range=(1, 2))
X_text = vectorizer.fit_transform(texts)
features = []
labels = []
for i, utterance in enumerate(utterances):
prosodic = utterance['prosodic_features']
feat = [
prosodic['duration'],
prosodic['mean_pitch'],
prosodic['min_pitch'],
prosodic['max_pitch'],
prosodic['pitch_sd'],
prosodic['intensityMean'],
prosodic['intensityMin'],
prosodic['intensityMax'],
prosodic['intensitySD'],
]
feat.extend(X_text[i].toarray()[0].tolist())
doc = nlp(utterance['text'])
feat.extend([
int(utterance['text'].endswith('?')),
len(re.findall(r'\b(why|how|what|when|where|who|which)\b', utterance['text'].lower())),
len(utterance['text'].split()),
sum(1 for token in doc if token.pos_ == 'VERB'),
sum(1 for token in doc if token.pos_ == 'NOUN')
])
features.append(feat)
labels.append(0 if i % 2 == 0 else 1)
scaler = StandardScaler()
X = scaler.fit_transform(features)
clf = RandomForestClassifier(
n_estimators=150,
max_depth=10,
random_state=42,
class_weight='balanced'
)
clf.fit(X, labels)
joblib.dump(clf, os.path.join(OUTPUT_DIR, 'role_classifier.pkl'))
joblib.dump(vectorizer, os.path.join(OUTPUT_DIR, 'text_vectorizer.pkl'))
joblib.dump(scaler, os.path.join(OUTPUT_DIR, 'feature_scaler.pkl'))
return clf, vectorizer, scaler
except Exception as e:
logger.error(f"Classifier training failed: {str(e)}")
raise
def classify_roles(utterances: List[Dict], clf, vectorizer, scaler):
try:
texts = [u['text'] for u in utterances]
X_text = vectorizer.transform(texts)
results = []
for i, utterance in enumerate(utterances):
prosodic = utterance['prosodic_features']
feat = [
prosodic['duration'],
prosodic['mean_pitch'],
prosodic['min_pitch'],
prosodic['max_pitch'],
prosodic['pitch_sd'],
prosodic['intensityMean'],
prosodic['intensityMin'],
prosodic['intensityMax'],
prosodic['intensitySD'],
]
feat.extend(X_text[i].toarray()[0].tolist())
doc = nlp(utterance['text'])
feat.extend([
int(utterance['text'].endswith('?')),
len(re.findall(r'\b(why|how|what|when|where|who|which)\b', utterance['text'].lower())),
len(utterance['text'].split()),
sum(1 for token in doc if token.pos_ == 'VERB'),
sum(1 for token in doc if token.pos_ == 'NOUN')
])
X = scaler.transform([feat])
role = 'Interviewer' if clf.predict(X)[0] == 0 else 'Interviewee'
results.append({**utterance, 'role': role})
return results
except Exception as e:
logger.error(f"Role classification failed: {str(e)}")
raise
def analyze_interviewee_voice(audio_path: str, utterances: List[Dict]) -> Dict:
try:
y, sr = librosa.load(audio_path, sr=16000)
interviewee_utterances = [u for u in utterances if u['role'] == 'Interviewee']
if not interviewee_utterances:
return {'error': 'No interviewee utterances found'}
segments = []
for u in interviewee_utterances:
start = int(u['start'] * sr / 1000)
end = int(u['end'] * sr / 1000)
segments.append(y[start:end])
combined_audio = np.concatenate(segments)
total_duration = sum(u['prosodic_features']['duration'] for u in interviewee_utterances)
total_words = sum(len(u['text'].split()) for u in interviewee_utterances)
speaking_rate = total_words / total_duration if total_duration > 0 else 0
filler_words = ['um', 'uh', 'like', 'you know', 'so', 'i mean']
filler_count = sum(
sum(u['text'].lower().count(fw) for fw in filler_words)
for u in interviewee_utterances
)
filler_ratio = filler_count / total_words if total_words > 0 else 0
all_words = ' '.join(u['text'].lower() for u in interviewee_utterances).split()
word_counts = {}
for i in range(len(all_words) - 1):
bigram = (all_words[i], all_words[i + 1])
word_counts[bigram] = word_counts.get(bigram, 0) + 1
repetition_score = sum(1 for count in word_counts.values() if count > 1) / len(
word_counts) if word_counts else 0
pitches = []
for segment in segments:
f0, voiced_flag, _ = librosa.pyin(segment, fmin=80, fmax=300, sr=sr)
pitches.extend(f0[voiced_flag])
pitch_mean = np.mean(pitches) if len(pitches) > 0 else 0
pitch_std = np.std(pitches) if len(pitches) > 0 else 0
jitter = np.mean(np.abs(np.diff(pitches))) / pitch_mean if len(pitches) > 1 and pitch_mean > 0 else 0
intensities = []
for segment in segments:
rms = librosa.feature.rms(y=segment)[0]
intensities.extend(rms)
intensity_mean = np.mean(intensities) if intensities else 0
intensity_std = np.std(intensities) if intensities else 0
shimmer = np.mean(np.abs(np.diff(intensities))) / intensity_mean if len(
intensities) > 1 and intensity_mean > 0 else 0
anxiety_score = 0.6 * (pitch_std / pitch_mean) + 0.4 * (jitter + shimmer) if pitch_mean > 0 else 0
confidence_score = 0.7 * (1 / (1 + intensity_std)) + 0.3 * (1 / (1 + filler_ratio))
hesitation_score = filler_ratio + repetition_score
anxiety_level = 'high' if anxiety_score > 0.15 else 'moderate' if anxiety_score > 0.07 else 'low'
confidence_level = 'high' if confidence_score > 0.7 else 'moderate' if confidence_score > 0.5 else 'low'
fluency_level = 'fluent' if (filler_ratio < 0.05 and repetition_score < 0.1) else 'moderate' if (
filler_ratio < 0.1 and repetition_score < 0.2) else 'disfluent'
return {
'speaking_rate': float(round(speaking_rate, 2)),
'filler_ratio': float(round(filler_ratio, 4)),
'repetition_score': float(round(repetition_score, 4)),
'pitch_analysis': {
'mean': float(round(pitch_mean, 2)),
'std_dev': float(round(pitch_std, 2)),
'jitter': float(round(jitter, 4))
},
'intensity_analysis': {
'mean': float(round(intensity_mean, 2)),
'std_dev': float(round(intensity_std, 2)),
'shimmer': float(round(shimmer, 4))
},
'composite_scores': {
'anxiety': float(round(anxiety_score, 4)),
'confidence': float(round(confidence_score, 4)),
'hesitation': float(round(hesitation_score, 4))
},
'interpretation': {
'anxiety_level': anxiety_level,
'confidence_level': confidence_level,
'fluency_level': fluency_level
}
}
except Exception as e:
logger.error(f"Voice analysis failed: {str(e)}")
return {'error': str(e)}
def generate_voice_interpretation(analysis: Dict) -> str:
# This function is used to provide the text interpretation for Gemini's prompt.
if 'error' in analysis:
return "Voice analysis not available."
interpretation_lines = []
interpretation_lines.append("Voice Analysis Summary:")
interpretation_lines.append(f"- Speaking Rate: {analysis['speaking_rate']} words/sec (average)")
interpretation_lines.append(f"- Filler Words: {analysis['filler_ratio'] * 100:.1f}% of words")
interpretation_lines.append(f"- Repetition Score: {analysis['repetition_score']:.3f}")
interpretation_lines.append(
f"- Anxiety Level: {analysis['interpretation']['anxiety_level'].upper()} (score: {analysis['composite_scores']['anxiety']:.3f})")
interpretation_lines.append(
f"- Confidence Level: {analysis['interpretation']['confidence_level'].upper()} (score: {analysis['composite_scores']['confidence']:.3f})")
interpretation_lines.append(f"- Fluency: {analysis['interpretation']['fluency_level'].upper()}")
interpretation_lines.append("")
interpretation_lines.append("Detailed Interpretation:")
interpretation_lines.append(
"1. A higher speaking rate indicates faster speech, which can suggest nervousness or enthusiasm.")
interpretation_lines.append("2. Filler words and repetitions reduce speech clarity and professionalism.")
interpretation_lines.append("3. Anxiety is measured through pitch variability and voice instability.")
interpretation_lines.append("4. Confidence is assessed through voice intensity and stability.")
interpretation_lines.append("5. Fluency combines filler words and repetition metrics.")
return "\n".join(interpretation_lines)
def generate_anxiety_confidence_chart(composite_scores: Dict, chart_path_or_buffer):
try:
labels = ['Anxiety', 'Confidence']
scores = [composite_scores.get('anxiety', 0), composite_scores.get('confidence', 0)]
fig, ax = plt.subplots(figsize=(5, 3))
bars = ax.bar(labels, scores, color=['#FF6B6B', '#4ECDC4'], edgecolor='black', width=0.6)
ax.set_ylabel('Score (Normalized)', fontsize=12)
ax.set_title('Vocal Dynamics: Anxiety vs. Confidence', fontsize=14, pad=15)
ax.set_ylim(0, 1.2)
for bar in bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2, height + 0.05, f"{height:.2f}",
ha='center', color='black', fontweight='bold', fontsize=11)
ax.grid(True, axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.savefig(chart_path_or_buffer, format='png', bbox_inches='tight', dpi=200)
plt.close(fig)
except Exception as e:
logger.error(f"Error generating chart: {str(e)}")
# --- Acceptance Probability Calculation ---
def calculate_acceptance_probability(analysis_data: Dict) -> float:
"""
Calculates a hypothetical acceptance probability based on voice and content analysis.
This is a simplified, heuristic model and can be refined with more data/ML.
"""
voice = analysis_data.get('voice_analysis', {})
if 'error' in voice:
return 0.0 # Cannot calculate if voice analysis failed
# Weights for different factors (adjust these to fine-tune the model)
w_confidence = 0.4
w_anxiety = -0.3 # Negative weight for anxiety
w_fluency = 0.2
w_speaking_rate = 0.1 # Ideal rate gets higher score
w_filler_repetition = -0.1 # Negative weight for filler/repetition
w_content_strengths = 0.2 # Placeholder, ideally from deeper content analysis
# Normalize/interpret scores
confidence_score = voice.get('composite_scores', {}).get('confidence', 0.0)
anxiety_score = voice.get('composite_scores', {}).get('anxiety', 0.0)
fluency_level = voice.get('interpretation', {}).get('fluency_level', 'disfluent')
speaking_rate = voice.get('speaking_rate', 0.0)
filler_ratio = voice.get('filler_ratio', 0.0)
repetition_score = voice.get('repetition_score', 0.0)
# Fluency mapping (higher score for more fluent)
fluency_map = {'fluent': 1.0, 'moderate': 0.5, 'disfluent': 0.0}
fluency_val = fluency_map.get(fluency_level, 0.0)
# Speaking rate scoring (e.g., ideal is around 2.5 words/sec, gets lower for too fast/slow)
# This is a simple inverse of deviation from ideal
ideal_speaking_rate = 2.5
speaking_rate_deviation = abs(speaking_rate - ideal_speaking_rate)
speaking_rate_score = max(0, 1 - (speaking_rate_deviation / ideal_speaking_rate)) # Max 1.0, min 0.0
# Filler/Repetition score (lower is better, so 1 - score)
filler_repetition_composite = (filler_ratio + repetition_score) / 2 # Average them
filler_repetition_score = max(0, 1 - filler_repetition_composite)
# Simplified content strength score (you might need a more sophisticated NLP method here)
# For now, based on presence of strengths in Gemini's content analysis
content_strength_val = 0.0
# This part would ideally come from a structured output from Gemini's content analysis.
# For now, we'll make a simplified assumption based on the analysis data:
# If content analysis found "strengths" (which is likely if Gemini generates a full report)
# This needs refinement if Gemini output is not structured for this.
if analysis_data.get('text_analysis', {}).get('total_duration', 0) > 0: # Basic check if interview happened
content_strength_val = 0.8 # Assume moderate strength if analysis went through
# You could parse gemini_report_text for specific phrases like "Strengths:" and count items.
# Calculate raw score
raw_score = (
confidence_score * w_confidence +
(1 - anxiety_score) * abs(w_anxiety) + # (1 - anxiety) because lower anxiety is better
fluency_val * w_fluency +
speaking_rate_score * w_speaking_rate +
filler_repetition_score * abs(w_filler_repetition) + # Use abs weight as score is already inverted
content_strength_val * w_content_strengths
)
# Normalize to 0-1 and then to percentage
# These max/min values are rough estimates and should be calibrated with real data
min_possible_score = (0 * w_confidence) + (0 * abs(w_anxiety)) + (0 * w_fluency) + (0 * w_speaking_rate) + (
0 * abs(w_filler_repetition)) + (0 * w_content_strengths)
max_possible_score = (1 * w_confidence) + (1 * abs(w_anxiety)) + (1 * w_fluency) + (1 * w_speaking_rate) + (
1 * abs(w_filler_repetition)) + (1 * w_content_strengths)
# Prevent division by zero if all weights are zero or min/max are same
if max_possible_score == min_possible_score:
normalized_score = 0.5 # Default if no variation
else:
normalized_score = (raw_score - min_possible_score) / (max_possible_score - min_possible_score)
acceptance_probability = max(0.0, min(1.0, normalized_score)) # Clamp between 0 and 1
return float(f"{acceptance_probability * 100:.2f}") # Return as percentage
def generate_report(analysis_data: Dict) -> str:
try:
voice = analysis_data.get('voice_analysis', {})
voice_interpretation = generate_voice_interpretation(voice)
interviewee_responses = [
f"- {u['text']}"
for u in analysis_data['transcript']
if u.get('role') == 'Interviewee'
] or ["- No interviewee responses available."]
full_responses_text = "\n".join([u['text'] for u in analysis_data['transcript'] if u.get('role') == 'Interviewee'])
acceptance_prob = analysis_data.get('acceptance_probability', 50.0)
acceptance_line = f"\n**Suitability Score: {acceptance_prob:.2f}%**\n"
if acceptance_prob >= 80:
acceptance_line += "HR Verdict: Outstanding candidate, recommended for immediate advancement."
elif acceptance_prob >= 60:
acceptance_line += "HR Verdict: Strong candidate, suitable for further evaluation."
elif acceptance_prob >= 40:
acceptance_line += "HR Verdict: Moderate potential, needs additional assessment."
else:
acceptance_line += "HR Verdict: Limited fit, significant improvement required."
prompt = f"""
You are EvalBot, a highly experienced senior HR analyst generating a comprehensive interview evaluation report based on both objective metrics and full interviewee responses.
Your task:
- Analyze deeply based on actual responses provided below. Avoid generic analysis.
- Use only insights that can be inferred from the answers or provided metrics.
- Maintain professional, HR-standard language with clear structure and bullet points.
- Avoid redundancy or overly generic feedback.
- The responses are real interviewee answers, treat them as high-priority source.
{acceptance_line}
### Interviewee Full Responses:
{full_responses_text}
### Metrics Summary:
- Duration: {analysis_data['text_analysis']['total_duration']:.2f} seconds
- Speaker Turns: {analysis_data['text_analysis']['speaker_turns']}
- Speaking Rate: {voice.get('speaking_rate', 'N/A')} words/sec
- Filler Words: {voice.get('filler_ratio', 0) * 100:.1f}%
- Confidence Level: {voice.get('interpretation', {}).get('confidence_level', 'N/A')}
- Anxiety Level: {voice.get('interpretation', {}).get('anxiety_level', 'N/A')}
- Fluency Level: {voice.get('interpretation', {}).get('fluency_level', 'N/A')}
- Voice Interpretation Summary: {voice_interpretation}
### Report Sections to Generate:
**1. Executive Summary**
- 3 bullets summarizing performance, key strengths, and hiring recommendation.
- Mention relevant metrics when applicable.
**2. Communication and Vocal Dynamics**
- Analyze delivery: speaking rate, filler words, confidence, anxiety, fluency.
- Provide 3-4 insightful bullets.
- Give 1 actionable improvement recommendation for workplace communication.
**3. Competency and Content**
- Identify 5-8 strengths (use HR competencies: leadership, teamwork, problem-solving, etc.).
- For each: provide short explanation + concrete example inferred from responses.
- Identify 5-10 weaknesses or development areas.
- For each weakness: provide actionable, practical feedback.
**4. Role Fit and Potential**
- Analyze role fit, cultural fit, growth potential in 3 bullets.
- Use examples from responses whenever possible.
**5. Recommendations**
- Provide 5 actionable recommendations categorized into:
- Communication Skills
- Content Delivery
- Professional Presentation
- Each recommendation should include a short improvement strategy/example.
**Next Steps for Hiring Managers**
- Provide 5 clear next steps: next round, training, assessment, mentorship, role fit review.
Ensure each section is clearly titled exactly as requested above.
Avoid repetition between sections.
Use professional HR tone.
Begin the full analysis now.
"""
response = gemini_model.generate_content(prompt)
clean_text = re.sub(r'[^\x20-\x7E\n]+', '', response.text)
return clean_text
except Exception as e:
logger.error(f"Report generation failed: {str(e)}")
return f"Error generating report: {str(e)}"
def create_pdf_report(analysis_data: Dict, output_path: str, gemini_report_text: str) -> bool:
try:
doc = SimpleDocTemplate(
output_path,
pagesize=letter,
rightMargin=0.75*inch,
leftMargin=0.75*inch,
topMargin=1*inch,
bottomMargin=1*inch
)
styles = getSampleStyleSheet()
# Custom styles
cover_title = ParagraphStyle(name='CoverTitle', fontSize=24, leading=28, spaceAfter=20, alignment=1, textColor=colors.HexColor('#003087'), fontName='Helvetica-Bold')
h1 = ParagraphStyle(name='Heading1', fontSize=16, leading=20, spaceAfter=14, alignment=1, textColor=colors.HexColor('#003087'), fontName='Helvetica-Bold')
h2 = ParagraphStyle(name='Heading2', fontSize=12, leading=15, spaceBefore=10, spaceAfter=8, textColor=colors.HexColor('#0050BC'), fontName='Helvetica-Bold')
h3 = ParagraphStyle(name='Heading3', fontSize=10, leading=12, spaceBefore=8, spaceAfter=6, textColor=colors.HexColor('#3F7CFF'), fontName='Helvetica-Bold')
body_text = ParagraphStyle(name='BodyText', fontSize=9, leading=12, spaceAfter=6, fontName='Helvetica', textColor=colors.HexColor('#333333'))
bullet_style = ParagraphStyle(name='Bullet', parent=body_text, leftIndent=18, bulletIndent=8, fontName='Helvetica', bulletFontName='Helvetica', bulletFontSize=9)
table_header = ParagraphStyle(name='TableHeader', fontSize=9, leading=11, textColor=colors.white, fontName='Helvetica-Bold')
table_body = ParagraphStyle(name='TableBody', fontSize=9, leading=11, fontName='Helvetica')
story = []
def header_footer(canvas, doc):
canvas.saveState()
canvas.setFont('Helvetica', 8)
canvas.setFillColor(colors.HexColor('#666666'))
canvas.drawString(doc.leftMargin, 0.5*inch, f"Page {doc.page} | EvalBot HR Interview Report | Confidential")
canvas.drawRightString(doc.width + doc.leftMargin, 0.5*inch, time.strftime('%B %d, %Y'))
canvas.setStrokeColor(colors.HexColor('#0050BC'))
canvas.setLineWidth(0.8)
canvas.line(doc.leftMargin, doc.height + 0.9*inch, doc.width + doc.leftMargin, doc.height + 0.9*inch)
canvas.setFont('Helvetica-Bold', 9)
canvas.drawString(doc.leftMargin, doc.height + 0.95*inch, "Candidate Interview Analysis")
canvas.restoreState()
# Cover Page
story.append(Spacer(1, 2*inch))
logo_path = 'logo.png'
if os.path.exists(logo_path):
story.append(Image(logo_path, width=2*inch, height=0.75*inch))
story.append(Spacer(1, 0.3*inch))
story.append(Paragraph("Candidate Interview Analysis Report", cover_title))
story.append(Spacer(1, 0.2*inch))
story.append(Paragraph(f"Candidate ID: {analysis_data.get('user_id', 'N/A')}", body_text))
story.append(Paragraph(f"Generated: {time.strftime('%B %d, %Y')}", body_text))
story.append(Spacer(1, 0.5*inch))
story.append(Paragraph("Confidential", ParagraphStyle(name='Confidential', fontSize=10, alignment=1, textColor=colors.HexColor('#D32F2F'), fontName='Helvetica-Bold')))
story.append(PageBreak())
# Table of Contents
story.append(Paragraph("Table of Contents", h1))
toc_data = [
[Paragraph("Section", table_header), Paragraph("Page", table_header)],
[Paragraph("1. Interview Evaluation Summary", table_body), Paragraph("3", table_body)],
[Paragraph("2. Communication & Vocal Dynamics", table_body), Paragraph("4", table_body)],
[Paragraph("3. Executive Summary", table_body), Paragraph("4", table_body)],
[Paragraph("4. Competency & Evaluation", table_body), Paragraph("5", table_body)],
[Paragraph("5. Role Fit & Potential", table_body), Paragraph("5", table_body)],
[Paragraph("6. Recommendations", table_body), Paragraph("6", table_body)],
]
toc_table = Table(toc_data, colWidths=[4*inch, 2*inch])
toc_table.setStyle(TableStyle([
('BACKGROUND', (0,0), (-1,0), colors.HexColor('#0050BC')),
('TEXTCOLOR', (0,0), (-1,0), colors.white),
('ALIGN', (0,0), (-1,-1), 'LEFT'),
('VALIGN', (0,0), (-1,-1), 'MIDDLE'),
('FONTNAME', (0,0), (-1,0), 'Helvetica-Bold'),
('FONTSIZE', (0,0), (-1,-1), 9),
('BOTTOMPADDING', (0,0), (-1,-1), 6),
('TOPPADING', (0,0), (-1,-1), 6),
('GRID', (0,0), (-1,-1), 0.5, colors.HexColor('#DDE4EE')),
]))
story.append(toc_table)
story.append(PageBreak())
# Title Page
story.append(Paragraph("Interview Evaluation Summary", h1))
story.append(Spacer(1, 0.3*inch))
acceptance_prob = analysis_data.get('acceptance_probability', 50.0)
prob_color = colors.HexColor('#2E7D32') if acceptance_prob >= 80 else (
colors.HexColor('#F57C00') if acceptance_prob >= 60 else colors.HexColor('#D32F2F')
)
story.append(Paragraph(
f"Suitability Score: <font size=14 color='{prob_color.hexval()}'><b>{acceptance_prob:.2f}%</b></font>",
ParagraphStyle(name='Score', fontSize=14, spaceAfter=12, alignment=1, fontName='Helvetica-Bold')
))
if acceptance_prob >= 80:
story.append(Paragraph("<b>HR Verdict:</b> Outstanding candidate, recommended for immediate advancement.", body_text))
elif acceptance_prob >= 60:
story.append(Paragraph("<b>HR Verdict:</b> Strong candidate, suitable for further evaluation.", body_text))
elif acceptance_prob >= 40:
story.append(Paragraph("<b>HR Verdict:</b> Moderate potential, needs additional assessment.", body_text))
else:
story.append(Paragraph("<b>HR Verdict:</b> Limited fit, significant improvement required.", body_text))
story.append(Spacer(1, 0.2*inch))
roles = sorted(set(u.get('role', 'Unknown') for u in analysis_data.get('transcript', [])))
table_data = [
[Paragraph('Metric', table_header), Paragraph('Value', table_header)],
[Paragraph('Interview Duration', table_body), Paragraph(f"{analysis_data['text_analysis'].get('total_duration', 0):.2f} seconds", table_body)],
[Paragraph('Speaker Turns', table_body), Paragraph(f"{analysis_data['text_analysis'].get('speaker_turns', 0)}", table_body)],
[Paragraph('Roles', table_body), Paragraph(', '.join(roles), table_body)],
]
table = Table(table_data, colWidths=[2.3*inch, 3.7*inch])
table.setStyle(TableStyle([
('BACKGROUND', (0,0), (-1,0), colors.HexColor('#0050BC')),
('TEXTCOLOR', (0,0), (-1,0), colors.white),
('ALIGN', (0,0), (-1,-1), 'LEFT'),
('VALIGN', (0,0), (-1,-1), 'MIDDLE'),
('FONTNAME', (0,0), (-1,0), 'Helvetica-Bold'),
('FONTSIZE', (0,0), (-1,-1), 9),
('BOTTOMPADDING', (0,0), (-1,-1), 8),
('TOPPADDING', (0,0), (-1,-1), 8),
('BACKGROUND', (0,1), (-1,-1), colors.HexColor('#F5F6FA')),
('GRID', (0,0), (-1,-1), 0.5, colors.HexColor('#DDE4EE')),
]))
story.append(table)
story.append(Spacer(1, 0.3*inch))
story.append(Paragraph("Prepared by: EvalBot - AI-Powered HR Analysis", body_text))
story.append(PageBreak())
# Detailed Analysis
story.append(Paragraph("Detailed Candidate Evaluation", h1))
# Communication and Vocal Dynamics
story.append(Paragraph("2. Communication & Vocal Dynamics", h2))
voice_analysis = analysis_data.get('voice_analysis', {})
if voice_analysis and 'error' not in voice_analysis:
table_data = [
[Paragraph('Metric', table_header), Paragraph('Value', table_header), Paragraph('HR Insight', table_header)],
[Paragraph('Speaking Rate', table_body), Paragraph(f"{voice_analysis.get('speaking_rate', 0):.2f} words/sec", table_body), Paragraph('Benchmark: 2.0-3.0 wps; impacts clarity', table_body)],
[Paragraph('Filler Words', table_body), Paragraph(f"{voice_analysis.get('filler_ratio', 0) * 100:.1f}%", table_body), Paragraph('High usage may reduce credibility', table_body)],
[Paragraph('Anxiety', table_body), Paragraph(voice_analysis.get('interpretation', {}).get('anxiety_level', 'N/A').title(), table_body), Paragraph(f"Score: {voice_analysis.get('composite_scores', {}).get('anxiety', 0):.3f}", table_body)],
[Paragraph('Confidence', table_body), Paragraph(voice_analysis.get('interpretation', {}).get('confidence_level', 'N/A').title(), table_body), Paragraph(f"Score: {voice_analysis.get('composite_scores', {}).get('confidence', 0):.3f}", table_body)],
[Paragraph('Fluency', table_body), Paragraph(voice_analysis.get('interpretation', {}).get('fluency_level', 'N/A').title(), table_body), Paragraph('Drives engagement', table_body)],
]
table = Table(table_data, colWidths=[1.6*inch, 1.2*inch, 3.2*inch])
table.setStyle(TableStyle([
('BACKGROUND', (0,0), (-1,0), colors.HexColor('#0050BC')),
('TEXTCOLOR', (0,0), (-1,0), colors.white),
('ALIGN', (0,0), (-1,-1), 'LEFT'),
('VALIGN', (0,0), (-1,-1), 'MIDDLE'),
('FONTNAME', (0,0), (-1,0), 'Helvetica-Bold'),
('FONTSIZE', (0,0), (-1,-1), 9),
('BOTTOMPADDING', (0,0), (-1,-1), 8),
('TOPPADDING', (0,0), (-1,-1), 8),
('BACKGROUND', (0,1), (-1,-1), colors.HexColor('#F5F6FA')),
('GRID', (0,0), (-1,-1), 0.5, colors.HexColor('#DDE4EE')),
]))
story.append(table)
story.append(Spacer(1, 0.2*inch))
chart_buffer = io.BytesIO()
generate_anxiety_confidence_chart(voice_analysis.get('composite_scores', {}), chart_buffer)
chart_buffer.seek(0)
img = Image(chart_buffer, width=4.5*inch, height=3*inch)
img.hAlign = 'CENTER'
story.append(img)
else:
story.append(Paragraph(f"Vocal analysis unavailable: {voice_analysis.get('error', 'No data available')}", body_text))
story.append(Spacer(1, 0.2*inch))
# Parse Gemini Report
sections = {
"Executive Summary": [],
"Communication": [],
"Competency": {"Strengths": [], "Weaknesses": []},
"Role Fit": [],
"Recommendations": {"Development": [], "Next Steps": []},
}
current_section = None
current_subsection = None
lines = gemini_report_text.split('\n')
for line in lines:
line = line.strip()
if not line: continue
heading_match = re.match(r'^\**(\d+\.\s+)?([^\*]+)\**$', line)
if heading_match:
section_title = heading_match.group(2).strip()
if 'Executive Summary' in section_title:
current_section = 'Executive Summary'
current_subsection = None
elif 'Communication' in section_title:
current_section = 'Communication'
current_subsection = None
elif 'Competency' in section_title:
current_section = 'Competency'
current_subsection = None
elif 'Role Fit' in section_title:
current_section = 'Role Fit'
current_subsection = None
elif 'Recommendations' in section_title:
current_section = 'Recommendations'
current_subsection = None
elif re.match(r'^[-*•]\s+', line) and current_section:
clean_line = re.sub(r'^[-*•]\s+', '', line).strip()
if not clean_line: continue
clean_line = re.sub(r'[()\[\]{}]', '', clean_line)
if current_section == 'Competency':
if any(k in clean_line.lower() for k in ['leader', 'problem', 'commun', 'adapt', 'strength', 'effective', 'skill', 'team', 'project']):
current_subsection = 'Strengths'
elif any(k in clean_line.lower() for k in ['improv', 'grow', 'weak', 'depth', 'challenge', 'gap']):
current_subsection = 'Weaknesses'
if current_subsection:
sections[current_section][current_subsection].append(clean_line)
elif current_section == 'Recommendations':
if any(k in clean_line.lower() for k in ['commun', 'tech', 'depth', 'pres', 'improve', 'enhance', 'clarity', 'structur', 'tone', 'deliver']):
current_subsection = 'Development'
elif any(k in clean_line.lower() for k in ['adv', 'train', 'assess', 'next', 'mentor', 'round']):
current_subsection = 'Next Steps'
if current_subsection:
sections[current_section][current_subsection].append(clean_line)
else:
sections[current_section].append(clean_line)
# Key Highlights
story.append(Paragraph("3. Key Highlights", h2))
summary_data = [
[Paragraph("Category", table_header), Paragraph("Detail", table_header)],
[Paragraph("Top Strength", table_body), Paragraph(sections['Competency']['Strengths'][0] if sections['Competency']['Strengths'] else "Demonstrated potential in leadership or teamwork.", table_body)],
[Paragraph("Key Weakness", table_body), Paragraph(sections['Competency']['Weaknesses'][0] if sections['Competency']['Weaknesses'] else "Needs improvement in response structure or technical skills.", table_body)],
[Paragraph("Top Recommendation", table_body), Paragraph(sections['Recommendations']['Development'][0] if sections['Recommendations']['Development'] else "Practice structured responses using the STAR method.", table_body)],
]
summary_table = Table(summary_data, colWidths=[2*inch, 4*inch])
summary_table.setStyle(TableStyle([
('BACKGROUND', (0,0), (-1,0), colors.HexColor('#0050BC')),
('TEXTCOLOR', (0,0), (-1,0), colors.white),
('ALIGN', (0,0), (-1,-1), 'LEFT'),
('VALIGN', (0,0), (-1,-1), 'MIDDLE'),
('FONTNAME', (0,0), (-1,0), 'Helvetica-Bold'),
('FONTSIZE', (0,0), (-1,-1), 9),
('BOTTOMPADDING', (0,0), (-1,-1), 6),
('TOPPADDING', (0,0), (-1,-1), 6),
('BACKGROUND', (0,1), (-1,-1), colors.HexColor('#E8F0FE')),
('GRID', (0,0), (-1,-1), 0.5, colors.HexColor('#DDE4EE')),
]))
story.append(summary_table)
story.append(Spacer(1, 0.3*inch))
# Executive Summary
story.append(Paragraph("4. Executive Summary", h2))
if sections['Executive Summary']:
for line in sections['Executive Summary']:
story.append(Paragraph(line, bullet_style))
else:
summary_lines = [
f"High suitability score of {acceptance_prob:.2f}% indicates strong potential.",
f"Interview duration: {analysis_data['text_analysis']['total_duration']:.2f} seconds, {analysis_data['text_analysis']['speaker_turns']} speaker turns.",
"Strengths in leadership and teamwork; recommended for further evaluation."
]
for line in summary_lines:
story.append(Paragraph(line, bullet_style))
story.append(Spacer(1, 0.2*inch))
# Competency and Content
story.append(Paragraph("5. Competency & Evaluation", h2))
story.append(Paragraph("Strengths", h3))
if sections['Competency']['Strengths']:
strength_table = Table([[Paragraph(line, bullet_style)] for line in sections['Competency']['Strengths']], colWidths=[6*inch])
strength_table.setStyle(TableStyle([
('BACKGROUND', (0,0), (-1,-1), colors.HexColor('#E6FFE6')),
('VALIGN', (0,0), (-1,-1), 'TOP'),
('LEFTPADDING', (0,0), (-1,-1), 6),
]))
story.append(strength_table)
else:
story.append(Paragraph("No specific strengths identified; candidate shows general potential in teamwork or initiative.", body_text))
story.append(Spacer(1, 0.1*inch))
story.append(Paragraph("Weaknesses", h3))
if sections['Competency']['Weaknesses']:
weakness_table = Table([[Paragraph(line, bullet_style)] for line in sections['Competency']['Weaknesses']], colWidths=[6*inch])
weakness_table.setStyle(TableStyle([
('BACKGROUND', (0,0), (-1,-1), colors.HexColor('#FFF0F0')),
('VALIGN', (0,0), (-1,-1), 'TOP'),
('LEFTPADDING', (0,0), (-1,-1), 6),
]))
story.append(weakness_table)
else:
story.append(Paragraph("No specific weaknesses identified; focus on enhancing existing strengths.", body_text))
story.append(Spacer(1, 0.2*inch))
# Role Fit
story.append(Paragraph("6. Role Fit & Potential", h2))
if sections['Role Fit']:
for line in sections['Role Fit']:
story.append(Paragraph(line, bullet_style))
else:
fit_lines = [
f"Suitability score of {acceptance_prob:.2f}% suggests alignment with role requirements.",
"Strengths in collaboration indicate fit for team-oriented environments.",
"Further assessment needed to confirm long-term cultural fit."
]
for line in fit_lines:
story.append(Paragraph(line, bullet_style))
story.append(Spacer(1, 0.2*inch))
# Recommendations
story.append(Paragraph("7. Recommendations", h2))
story.append(Paragraph("Development Priorities", h3))
if sections['Recommendations']['Development']:
dev_table = Table([[Paragraph(line, bullet_style)] for line in sections['Recommendations']['Development']], colWidths=[6*inch])
dev_table.setStyle(TableStyle([
('BACKGROUND', (0,0), (-1,-1), colors.HexColor('#E8F0FE')),
('VALIGN', (0,0), (-1,-1), 'TOP'),
('LEFTPADDING', (0,0), (-1,-1), 6),
]))
story.append(dev_table)
else:
dev_lines = [
"Improve communication clarity by practicing the STAR method for structured responses.",
"Enhance content delivery by quantifying achievements (e.g., 'Led a team to achieve 20% growth').",
"Boost professional presentation through public speaking workshops.",
"Reduce filler words via recorded practice sessions."
]
dev_table = Table([[Paragraph(line, bullet_style)] for line in dev_lines], colWidths=[6*inch])
dev_table.setStyle(TableStyle([
('BACKGROUND', (0,0), (-1,-1), colors.HexColor('#E8F0FE')),
('VALIGN', (0,0), (-1,-1), 'TOP'),
('LEFTPADDING', (0,0), (-1,-1), 6),
]))
story.append(dev_table)
story.append(Spacer(1, 0.1*inch))
story.append(Paragraph("Next Steps", h3))
if sections['Recommendations']['Next Steps']:
for line in sections['Recommendations']['Next Steps']:
story.append(Paragraph(line, bullet_style))
else:
next_steps = [
f"Advance to next round given {acceptance_prob:.2f}% suitability score.",
"Provide training to address technical or communication gaps.",
"Conduct a behavioral assessment to confirm role alignment."
]
for line in next_steps:
story.append(Paragraph(line, bullet_style))
story.append(Spacer(1, 0.2*inch))
doc.build(story, onFirstPage=header_footer, onLaterPages=header_footer)
logger.info(f"PDF report successfully generated at {output_path}")
return True
except Exception as e:
logger.error(f"PDF generation failed: {str(e)}", exc_info=True)
return False
def convert_to_serializable(obj):
if isinstance(obj, np.generic):
return obj.item()
elif isinstance(obj, dict):
return {key: convert_to_serializable(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [convert_to_serializable(item) for item in obj]
elif isinstance(obj, np.ndarray):
return obj.tolist()
return obj
def process_interview(audio_path: str):
try:
logger.info(f"Starting processing for {audio_path}")
wav_file = convert_to_wav(audio_path)
logger.info("Starting transcription")
transcript = transcribe(wav_file)
logger.info("Transcript result: %s", transcript)
# Check transcript validity
if not transcript or 'utterances' not in transcript or not transcript['utterances']:
logger.error("Transcription failed or returned empty utterances")
raise ValueError("Transcription failed or returned empty utterances")
logger.info("Extracting prosodic features")
for utterance in transcript['utterances']:
utterance['prosodic_features'] = extract_prosodic_features(
wav_file,
utterance['start'],
utterance['end']
)
logger.info("Identifying speakers")
utterances_with_speakers = identify_speakers(transcript, wav_file)
logger.info("Classifying roles")
if os.path.exists(os.path.join(OUTPUT_DIR, 'role_classifier.pkl')):
clf = joblib.load(os.path.join(OUTPUT_DIR, 'role_classifier.pkl'))
vectorizer = joblib.load(os.path.join(OUTPUT_DIR, 'text_vectorizer.pkl'))
scaler = joblib.load(os.path.join(OUTPUT_DIR, 'feature_scaler.pkl'))
else:
clf, vectorizer, scaler = train_role_classifier(utterances_with_speakers)
classified_utterances = classify_roles(utterances_with_speakers, clf, vectorizer, scaler)
logger.info("Analyzing interviewee voice")
voice_analysis = analyze_interviewee_voice(wav_file, classified_utterances)
analysis_data = {
'transcript': classified_utterances,
'speakers': list(set(u['speaker'] for u in classified_utterances)),
'voice_analysis': voice_analysis,
'text_analysis': {
'total_duration': sum(u['prosodic_features']['duration'] for u in classified_utterances),
'speaker_turns': len(classified_utterances)
}
}
acceptance_probability = calculate_acceptance_probability(analysis_data)
analysis_data['acceptance_probability'] = acceptance_probability
logger.info("Generating report text using Gemini")
gemini_report_text = generate_report(analysis_data)
base_name = os.path.splitext(os.path.basename(audio_path))[0]
pdf_path = os.path.join(OUTPUT_DIR, f"{base_name}_report.pdf")
create_pdf_report(analysis_data, pdf_path, gemini_report_text=gemini_report_text)
json_path = os.path.join(OUTPUT_DIR, f"{base_name}_analysis.json")
with open(json_path, 'w') as f:
serializable_data = convert_to_serializable(analysis_data)
json.dump(serializable_data, f, indent=2)
os.remove(wav_file)
logger.info(f"Processing completed for {audio_path}")
return {
'pdf_path': pdf_path,
'json_path': json_path
}
except Exception as e:
logger.error(f"Processing failed: {str(e)}", exc_info=True)
if 'wav_file' in locals() and os.path.exists(wav_file):
os.remove(wav_file)
raise