File size: 21,633 Bytes
eabbb82 4d417cb eabbb82 4d417cb eabbb82 4d417cb eabbb82 4d417cb 87066d1 4d417cb eabbb82 d93e674 eabbb82 4d417cb d93e674 4d417cb dda086c 4d417cb 285f925 d93e674 71e2e34 4d417cb eabbb82 4d417cb d93e674 eabbb82 4d417cb d93e674 4d417cb d93e674 4d417cb d93e674 4d417cb 58775af eabbb82 abafa67 d93e674 abafa67 d93e674 4d417cb d93e674 4d417cb bfc9b9d d93e674 dbde83d bfc9b9d d93e674 dda086c d93e674 87066d1 eabbb82 d93e674 eabbb82 d93e674 4d417cb eabbb82 4d417cb eabbb82 4d417cb d93e674 4d417cb d93e674 4d417cb d93e674 4d417cb d93e674 4d417cb eabbb82 d93e674 eabbb82 d93e674 bfc9b9d d93e674 eabbb82 d93e674 eabbb82 4260dbb 4d417cb 4260dbb eabbb82 d93e674 eabbb82 d93e674 4d417cb d93e674 4d417cb d93e674 eabbb82 dbde83d d93e674 dbde83d ec0833e d93e674 4d417cb ec0833e d93e674 4d417cb 87066d1 d93e674 520d9b2 ec0833e d93e674 eabbb82 71e2e34 d93e674 ec0833e 4d417cb d93e674 eabbb82 d93e674 4d417cb d93e674 4d417cb d93e674 eabbb82 d93e674 dbde83d d93e674 dbde83d eabbb82 4d417cb dfaa2b7 eabbb82 4d417cb d93e674 4d417cb d93e674 4d417cb d93e674 4d417cb d93e674 eabbb82 4d417cb d93e674 4d417cb d93e674 4d417cb dfaa2b7 bfc9b9d 4d417cb d93e674 4d417cb d93e674 4d417cb d93e674 4d417cb ec0833e d93e674 4d417cb d93e674 4d417cb d93e674 4d417cb d93e674 4d417cb dfaa2b7 87066d1 d93e674 71e2e34 4d417cb ba2c2ae d93e674 71e2e34 eabbb82 d93e674 4d417cb dbde83d d93e674 bfc9b9d d93e674 eabbb82 d93e674 eabbb82 d93e674 eabbb82 d93e674 eabbb82 d93e674 4d417cb d93e674 71e2e34 d93e674 eabbb82 d93e674 93c279b d93e674 285f925 d93e674 71e2e34 d93e674 71e2e34 d93e674 4d417cb d93e674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import os
import torch
import numpy as np
import uuid
import requests
import time
import json
from pydub import AudioSegment
import wave
from nemo.collections.asr.models import EncDecSpeakerLabelModel
from pinecone import Pinecone, ServerlessSpec
import librosa
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
import re
from typing import Dict, List, Tuple
import logging
import tempfile
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, PageBreak, Image, HRFlowable
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
import io
from transformers import AutoTokenizer, AutoModel, pipeline
import spacy
import google.generativeai as genai
import joblib
from concurrent.futures import ThreadPoolExecutor
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logging.getLogger("nemo_logger").setLevel(logging.WARNING)
# Configuration
OUTPUT_DIR = "./processed_audio"
os.makedirs(OUTPUT_DIR, exist_ok=True)
# API Keys
PINECONE_KEY = os.getenv("PINECONE_KEY", "your-pinecone-key")
ASSEMBLYAI_KEY = os.getenv("ASSEMBLYAI_KEY", "your-assemblyai-key")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "your-gemini-key")
def validate_url(url: str) -> bool:
try:
response = requests.head(url, timeout=5)
return response.status_code == 200
except requests.RequestException as e:
logger.error(f"URL validation failed for {url}: {str(e)}")
return False
def download_audio_from_url(url: str) -> str:
if not validate_url(url):
raise ValueError(f"Audio file not found or inaccessible at {url}")
try:
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, f"{uuid.uuid4()}.tmp_audio")
logger.info(f"Downloading audio from {url} to {temp_path}")
with requests.get(url, stream=True, timeout=10) as r:
r.raise_for_status()
with open(temp_path, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
return temp_path
except Exception as e:
logger.error(f"Failed to download audio from URL {url}: {str(e)}")
raise
def initialize_services():
try:
pc = Pinecone(api_key=PINECONE_KEY)
index_name = "interview-speaker-embeddings"
if index_name not in pc.list_indexes().names():
pc.create_index(name=index_name, dimension=192, metric="cosine", spec=ServerlessSpec(cloud="aws", region="us-east-1"))
index = pc.Index(index_name)
genai.configure(api_key=GEMINI_API_KEY)
gemini_model = genai.GenerativeModel('gemini-1.5-flash')
return index, gemini_model
except Exception as e:
logger.error(f"Error initializing services: {str(e)}")
raise
index, gemini_model = initialize_services()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
def load_models():
speaker_model = EncDecSpeakerLabelModel.from_pretrained("nvidia/speakerverification_en_titanet_large", map_location=device)
speaker_model.eval()
nlp = spacy.load("en_core_web_sm")
# Removed unused models for clarity
return speaker_model, nlp
speaker_model, nlp = load_models()
def convert_to_wav(audio_path: str, output_dir: str = OUTPUT_DIR) -> str:
# This function is unchanged from your version
try:
audio = AudioSegment.from_file(audio_path)
if audio.channels > 1: audio = audio.set_channels(1)
audio = audio.set_frame_rate(16000)
wav_file = os.path.join(output_dir, f"{uuid.uuid4()}.wav")
audio.export(wav_file, format="wav")
return wav_file
except Exception as e:
logger.error(f"Audio conversion failed: {str(e)}")
raise
def extract_prosodic_features(audio_path: str, start_ms: int, end_ms: int) -> Dict:
# This function is unchanged from your version
try:
audio = AudioSegment.from_file(audio_path)
segment = audio[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
y, sr = librosa.load(tmp.name, sr=16000)
os.remove(tmp.name)
pitches, _ = librosa.piptrack(y=y, sr=sr)
pitches = pitches[pitches > 0]
return {
'duration': (end_ms - start_ms) / 1000.0,
'mean_pitch': float(np.mean(pitches)) if len(pitches) > 0 else 0.0,
'min_pitch': float(np.min(pitches)) if len(pitches) > 0 else 0.0,
'max_pitch': float(np.max(pitches)) if len(pitches) > 0 else 0.0,
'pitch_sd': float(np.std(pitches)) if len(pitches) > 0 else 0.0,
'intensityMean': float(np.mean(librosa.feature.rms(y=y)[0])),
'intensityMin': float(np.min(librosa.feature.rms(y=y)[0])),
'intensityMax': float(np.max(librosa.feature.rms(y=y)[0])),
'intensitySD': float(np.std(librosa.feature.rms(y=y)[0])),
}
except Exception as e:
logger.error(f"Feature extraction failed: {str(e)}")
return {}
def transcribe(audio_path: str) -> Dict:
# This function is unchanged from your version
try:
with open(audio_path, 'rb') as f:
upload_response = requests.post("https://api.assemblyai.com/v2/upload", headers={"authorization": ASSEMBLYAI_KEY}, data=f)
audio_url = upload_response.json()['upload_url']
transcript_response = requests.post("https://api.assemblyai.com/v2/transcript", headers={"authorization": ASSEMBLYAI_KEY}, json={"audio_url": audio_url, "speaker_labels": True, "filter_profanity": True})
transcript_id = transcript_response.json()['id']
while True:
result = requests.get(f"https://api.assemblyai.com/v2/transcript/{transcript_id}", headers={"authorization": ASSEMBLYAI_KEY}).json()
if result['status'] == 'completed': return result
elif result['status'] == 'error': raise Exception(f"AssemblyAI Error: {result.get('error')}")
time.sleep(5)
except Exception as e:
logger.error(f"Transcription failed: {str(e)}")
raise
def process_utterance(utterance: Dict, full_audio: AudioSegment) -> Dict:
# This function is unchanged from your version
try:
start, end = utterance['start'], utterance['end']
segment = full_audio[start:end]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
with torch.no_grad():
embedding = speaker_model.get_embedding(tmp.name).cpu().numpy()
os.remove(tmp.name)
embedding_list = embedding.flatten().tolist()
query_result = index.query(vector=embedding_list, top_k=1, include_metadata=True)
if query_result['matches'] and query_result['matches'][0]['score'] > 0.75:
speaker_id = query_result['matches'][0]['id']
speaker_name = query_result['matches'][0]['metadata']['speaker_name']
else:
speaker_id = f"speaker_{uuid.uuid4().hex[:6]}"
speaker_name = f"Speaker_{speaker_id[-4:].upper()}"
index.upsert([(speaker_id, embedding_list, {"speaker_name": speaker_name})])
return {**utterance, 'speaker': speaker_name, 'speaker_id': speaker_id}
except Exception as e:
logger.error(f"Utterance processing failed: {str(e)}")
return {**utterance, 'speaker': 'Unknown', 'speaker_id': 'unknown'}
def identify_speakers(transcript: Dict, wav_file: str) -> List[Dict]:
# This function is unchanged from your version
try:
full_audio = AudioSegment.from_wav(wav_file)
utterances = transcript.get('utterances', [])
with ThreadPoolExecutor(max_workers=5) as executor:
futures = [executor.submit(process_utterance, u, full_audio) for u in utterances]
results = [f.result() for f in futures]
return results
except Exception as e:
logger.error(f"Speaker identification failed: {str(e)}")
raise
def classify_roles(utterances: List[Dict]) -> List[Dict]:
# Using simple alternating logic as per your decision to pause on training a custom model
results = []
for i, utterance in enumerate(utterances):
utterance['role'] = 'Interviewer' if i % 2 == 0 else 'Interviewee'
results.append(utterance)
return results
def analyze_interviewee_voice(audio_path: str, utterances: List[Dict]) -> Dict:
# This function is unchanged from your version
try:
y, sr = librosa.load(audio_path, sr=16000)
interviewee_utterances = [u for u in utterances if u.get('role') == 'Interviewee']
if not interviewee_utterances: return {'error': 'No interviewee utterances found'}
segments = [y[int(u['start']*sr/1000):int(u['end']*sr/1000)] for u in interviewee_utterances if u['end'] > u['start']]
if not segments: return {'error': 'No valid audio segments found'}
total_duration = sum(u['prosodic_features']['duration'] for u in interviewee_utterances)
total_words = sum(len(u['text'].split()) for u in interviewee_utterances)
speaking_rate = total_words / total_duration if total_duration > 0 else 0
filler_words = ['um', 'uh', 'like', 'you know', 'so', 'i mean']
filler_count = sum(sum(u['text'].lower().count(fw) for fw in filler_words) for u in interviewee_utterances)
filler_ratio = filler_count / total_words if total_words > 0 else 0
pitches, intensities = [], []
for segment in segments:
if len(segment) == 0: continue
f0, voiced_flag, _ = librosa.pyin(segment, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), sr=sr)
pitches.extend(f0[voiced_flag])
intensities.extend(librosa.feature.rms(y=segment)[0])
pitch_mean = float(np.mean(pitches)) if len(pitches) > 0 else 0.0
intensity_std = float(np.std(intensities)) if len(intensities) > 0 else 0.0
jitter = float(np.mean(np.abs(np.diff(pitches))) / pitch_mean) if len(pitches) > 1 and pitch_mean > 0 else 0.0
shimmer = float(np.mean(np.abs(np.diff(intensities))) / np.mean(intensities)) if len(intensities) > 1 and np.mean(intensities) > 0 else 0.0
anxiety_score = 0.6 * (np.std(pitches)/pitch_mean if pitch_mean > 0 else 0) + 0.4 * (jitter + shimmer)
confidence_score = 0.7 * (1/(1+intensity_std)) + 0.3 * (1-filler_ratio)
return {
'speaking_rate': round(speaking_rate, 2), 'filler_ratio': round(filler_ratio, 3),
'composite_scores': {'anxiety': round(anxiety_score, 3), 'confidence': round(confidence_score, 3)},
'interpretation': {
'anxiety_level': 'High' if anxiety_score > 0.15 else 'Moderate' if anxiety_score > 0.07 else 'Low',
'confidence_level': 'High' if confidence_score > 0.75 else 'Moderate' if confidence_score > 0.5 else 'Low',
'fluency_level': 'Fluent' if filler_ratio < 0.05 else 'Moderate'
}
}
except Exception as e:
logger.error(f"Voice analysis failed: {str(e)}")
return {'error': str(e)}
def calculate_acceptance_probability(analysis_data: Dict) -> float:
# This is your custom, detailed function
voice = analysis_data.get('voice_analysis', {})
if 'error' in voice: return 50.0
w_confidence, w_anxiety, w_fluency, w_speaking_rate, w_filler_repetition, w_content_strengths = 0.35, -0.25, 0.2, 0.15, -0.15, 0.25
confidence_score = voice.get('composite_scores', {}).get('confidence', 0.0)
anxiety_score = voice.get('composite_scores', {}).get('anxiety', 0.0)
fluency_level = voice.get('interpretation', {}).get('fluency_level', 'Disfluent')
speaking_rate = voice.get('speaking_rate', 0.0)
filler_ratio = voice.get('filler_ratio', 0.0)
repetition_score = voice.get('repetition_score', 0.0)
fluency_map = {'Fluent': 1.0, 'Moderate': 0.6, 'Disfluent': 0.2}
fluency_val = fluency_map.get(fluency_level, 0.2)
ideal_speaking_rate = 2.5
speaking_rate_deviation = abs(speaking_rate - ideal_speaking_rate)
speaking_rate_score = max(0, 1 - (speaking_rate_deviation / ideal_speaking_rate))
filler_repetition_composite = (filler_ratio + repetition_score) / 2
filler_repetition_score = max(0, 1 - filler_repetition_composite)
content_strength_val = 0.85 if analysis_data.get('text_analysis', {}).get('total_duration', 0) > 60 else 0.4
raw_score = (confidence_score * w_confidence + (1 - anxiety_score) * abs(w_anxiety) + fluency_val * w_fluency + speaking_rate_score * w_speaking_rate + filler_repetition_score * abs(w_filler_repetition) + content_strength_val * w_content_strengths)
max_possible_score = (w_confidence + abs(w_anxiety) + w_fluency + w_speaking_rate + abs(w_filler_repetition) + w_content_strengths)
normalized_score = raw_score / max_possible_score if max_possible_score > 0 else 0.5
acceptance_probability = max(0.0, min(1.0, normalized_score))
return float(f"{acceptance_probability * 100:.2f}")
def convert_to_serializable(obj):
# This function is unchanged
if isinstance(obj, np.generic): return obj.item()
if isinstance(obj, dict): return {k: convert_to_serializable(v) for k, v in obj.items()}
if isinstance(obj, list): return [convert_to_serializable(i) for i in obj]
if isinstance(obj, np.ndarray): return obj.tolist()
return obj
# --- NEW: HR Persona Report Generation ---
def generate_report(analysis_data: Dict, user_id: str) -> str:
try:
voice = analysis_data.get('voice_analysis', {})
voice_interpretation = "Voice analysis data was not available."
if voice and 'error' not in voice:
voice_interpretation = (
f"The candidate's voice profile indicates a '{voice.get('interpretation', {}).get('confidence_level', 'N/A').upper()}' confidence level "
f"and a '{voice.get('interpretation', {}).get('anxiety_level', 'N/A').upper()}' anxiety level. "
f"Fluency was rated as '{voice.get('interpretation', {}).get('fluency_level', 'N/A').upper()}'."
)
prob = analysis_data.get('acceptance_probability')
prompt = f"""
**Persona:** You are a Senior HR Partner writing a candidate evaluation memo for the hiring manager.
**Task:** Write a professional, objective, and concise evaluation based on the data below.
**Tone:** Analytical and formal.
**CANDIDATE EVALUATION MEMORANDUM**
**CONFIDENTIAL**
**Candidate ID:** {user_id}
**Analysis Date:** {time.strftime('%Y-%m-%d')}
**Estimated Suitability Score:** {prob:.2f}%
**1. Overall Recommendation:**
Provide a clear, one-sentence recommendation (e.g., "Highly recommend proceeding to the final round," "Recommend with reservations," or "Do not recommend at this time."). Briefly justify the recommendation.
**2. Communication & Presentation Style:**
- Evaluate the candidate's communication style based on vocal delivery (confidence, clarity, potential nervousness).
- **Data for Analysis:** {voice_interpretation}
**3. Actionable Next Steps:**
- Suggest specific questions or topics for the next interviewer to focus on.
- If not recommending, provide a concise, constructive reason.
"""
response = gemini_model.generate_content(prompt)
return response.text
except Exception as e:
logger.error(f"Report generation failed: {str(e)}")
return f"Error generating report: {str(e)}"
# --- NEW: Polished PDF Creation ---
def create_pdf_report(analysis_data: Dict, output_path: str, gemini_report_text: str):
try:
doc = SimpleDocTemplate(output_path, pagesize=letter,
rightMargin=0.75*inch, leftMargin=0.75*inch,
topMargin=1.2*inch, bottomMargin=1*inch)
styles = getSampleStyleSheet()
h1 = ParagraphStyle(name='Heading1', fontSize=18, leading=22, spaceAfter=12, alignment=1, textColor=colors.HexColor('#00205B'), fontName='Helvetica-Bold')
h2 = ParagraphStyle(name='Heading2', fontSize=14, leading=18, spaceBefore=12, spaceAfter=8, textColor=colors.HexColor('#003366'), fontName='Helvetica-Bold')
body_text = ParagraphStyle(name='BodyText', parent=styles['Normal'], fontSize=10, leading=14, spaceAfter=6, fontName='Helvetica')
story = []
def header_footer(canvas, doc):
canvas.saveState()
canvas.setFont('Helvetica', 9)
canvas.setFillColor(colors.grey)
canvas.drawString(doc.leftMargin, 0.5 * inch, f"Page {doc.page} | EvalBot Confidential Report")
canvas.restoreState()
# Simple renderer for markdown-like text from Gemini
# It converts **bold** to <b>bold</b> and newlines to <br/>
formatted_text = gemini_report_text.replace('\n', '<br/>')
formatted_text = re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', formatted_text)
lines = formatted_text.split('<br/>')
for line in lines:
line = line.strip()
if not line:
story.append(Spacer(1, 8))
continue
# Use heading style for lines that look like headings (bolded and short)
if line.startswith('<b>') and len(line) < 100:
story.append(Paragraph(line, h2))
else:
story.append(Paragraph(line, body_text))
doc.build(story, onFirstPage=header_footer, onLaterPages=header_footer)
return True
except Exception as e:
logger.error(f"PDF creation failed: {str(e)}", exc_info=True)
return False
# --- MAIN ORCHESTRATOR FUNCTION ---
def process_interview(audio_url: str, user_id: str) -> Dict:
local_audio_path = None
wav_file = None
is_downloaded = False
try:
logger.info(f"Starting processing for user '{user_id}' URL: {audio_url}")
local_audio_path = download_audio_from_url(audio_url)
is_downloaded = True
wav_file = convert_to_wav(local_audio_path)
transcript = transcribe(wav_file)
if 'utterances' not in transcript or not transcript['utterances']:
raise ValueError("Transcription returned no utterances.")
for u in transcript['utterances']:
u['prosodic_features'] = extract_prosodic_features(wav_file, u['start'], u['end'])
utterances_with_speakers = identify_speakers(transcript, wav_file)
# Using alternating role classification as decided
for i, u in enumerate(utterances_with_speakers):
u['role'] = 'Interviewer' if i % 2 == 0 else 'Interviewee'
classified_utterances = utterances_with_speakers
voice_analysis = analyze_interviewee_voice(wav_file, classified_utterances)
# We removed the separate content analysis and integrated it into the Gemini prompt
analysis_data = {
'user_id': user_id,
'transcript': classified_utterances,
'speakers': list(set(u['speaker'] for u in classified_utterances if u['speaker'] != 'Unknown')),
'voice_analysis': voice_analysis,
'text_analysis': {
'total_duration': sum(u.get('prosodic_features',{}).get('duration',0) for u in classified_utterances),
'speaker_turns': len(classified_utterances)
}
}
analysis_data['acceptance_probability'] = calculate_acceptance_probability(analysis_data)
gemini_report_text = generate_report(analysis_data, user_id)
base_name = str(uuid.uuid4())
# We will now generate only one professional PDF report
company_pdf_path = os.path.join(OUTPUT_DIR, f"{base_name}_company_report.pdf")
json_path = os.path.join(OUTPUT_DIR, f"{base_name}_analysis.json")
create_pdf_report(analysis_data, company_pdf_path, gemini_report_text)
with open(json_path, 'w') as f:
json.dump(convert_to_serializable(analysis_data), f, indent=2)
logger.info(f"Processing completed for {audio_url}")
return {
'company_pdf_path': company_pdf_path,
'json_path': json_path,
'pdf_filename': os.path.basename(company_pdf_path),
'json_filename': os.path.basename(json_path)
}
except Exception as e:
logger.error(f"Processing failed for {audio_url}: {str(e)}", exc_info=True)
raise
finally:
if wav_file and os.path.exists(wav_file):
try: os.remove(wav_file)
except Exception as e: logger.error(f"Failed to clean up wav file {wav_file}: {str(e)}")
if is_downloaded and local_audio_path and os.path.exists(local_audio_path):
try:
os.remove(local_audio_path)
logger.info(f"Cleaned up temporary file: {local_audio_path}")
except Exception as e: logger.error(f"Failed to clean up local audio file {local_audio_path}: {str(e)}") |