import os import torch import numpy as np import uuid import requests import time import json from pydub import AudioSegment import wave from nemo.collections.asr.models import EncDecSpeakerLabelModel from pinecone import Pinecone, ServerlessSpec import librosa import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import TfidfVectorizer import re from typing import Dict, List, Tuple import logging import tempfile from reportlab.lib.pagesizes import letter from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, PageBreak, Image, HRFlowable from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.units import inch from reportlab.lib import colors import matplotlib.pyplot as plt import matplotlib matplotlib.use('Agg') import io from transformers import AutoTokenizer, AutoModel, pipeline import spacy import google.generativeai as genai import joblib from concurrent.futures import ThreadPoolExecutor # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) logging.getLogger("nemo_logger").setLevel(logging.WARNING) # Configuration OUTPUT_DIR = "./processed_audio" os.makedirs(OUTPUT_DIR, exist_ok=True) # API Keys PINECONE_KEY = os.getenv("PINECONE_KEY", "your-pinecone-key") ASSEMBLYAI_KEY = os.getenv("ASSEMBLYAI_KEY", "your-assemblyai-key") GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "your-gemini-key") def validate_url(url: str) -> bool: try: response = requests.head(url, timeout=5) return response.status_code == 200 except requests.RequestException as e: logger.error(f"URL validation failed for {url}: {str(e)}") return False def download_audio_from_url(url: str) -> str: if not validate_url(url): raise ValueError(f"Audio file not found or inaccessible at {url}") try: temp_dir = tempfile.gettempdir() temp_path = os.path.join(temp_dir, f"{uuid.uuid4()}.tmp_audio") logger.info(f"Downloading audio from {url} to {temp_path}") with requests.get(url, stream=True, timeout=10) as r: r.raise_for_status() with open(temp_path, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) return temp_path except Exception as e: logger.error(f"Failed to download audio from URL {url}: {str(e)}") raise def initialize_services(): try: pc = Pinecone(api_key=PINECONE_KEY) index_name = "interview-speaker-embeddings" if index_name not in pc.list_indexes().names(): pc.create_index(name=index_name, dimension=192, metric="cosine", spec=ServerlessSpec(cloud="aws", region="us-east-1")) index = pc.Index(index_name) genai.configure(api_key=GEMINI_API_KEY) gemini_model = genai.GenerativeModel('gemini-1.5-flash') return index, gemini_model except Exception as e: logger.error(f"Error initializing services: {str(e)}") raise index, gemini_model = initialize_services() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info(f"Using device: {device}") def load_models(): speaker_model = EncDecSpeakerLabelModel.from_pretrained("nvidia/speakerverification_en_titanet_large", map_location=device) speaker_model.eval() nlp = spacy.load("en_core_web_sm") # Removed unused models for clarity return speaker_model, nlp speaker_model, nlp = load_models() def convert_to_wav(audio_path: str, output_dir: str = OUTPUT_DIR) -> str: # This function is unchanged from your version try: audio = AudioSegment.from_file(audio_path) if audio.channels > 1: audio = audio.set_channels(1) audio = audio.set_frame_rate(16000) wav_file = os.path.join(output_dir, f"{uuid.uuid4()}.wav") audio.export(wav_file, format="wav") return wav_file except Exception as e: logger.error(f"Audio conversion failed: {str(e)}") raise def extract_prosodic_features(audio_path: str, start_ms: int, end_ms: int) -> Dict: # This function is unchanged from your version try: audio = AudioSegment.from_file(audio_path) segment = audio[start_ms:end_ms] with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp: segment.export(tmp.name, format="wav") y, sr = librosa.load(tmp.name, sr=16000) os.remove(tmp.name) pitches, _ = librosa.piptrack(y=y, sr=sr) pitches = pitches[pitches > 0] return { 'duration': (end_ms - start_ms) / 1000.0, 'mean_pitch': float(np.mean(pitches)) if len(pitches) > 0 else 0.0, 'min_pitch': float(np.min(pitches)) if len(pitches) > 0 else 0.0, 'max_pitch': float(np.max(pitches)) if len(pitches) > 0 else 0.0, 'pitch_sd': float(np.std(pitches)) if len(pitches) > 0 else 0.0, 'intensityMean': float(np.mean(librosa.feature.rms(y=y)[0])), 'intensityMin': float(np.min(librosa.feature.rms(y=y)[0])), 'intensityMax': float(np.max(librosa.feature.rms(y=y)[0])), 'intensitySD': float(np.std(librosa.feature.rms(y=y)[0])), } except Exception as e: logger.error(f"Feature extraction failed: {str(e)}") return {} def transcribe(audio_path: str) -> Dict: # This function is unchanged from your version try: with open(audio_path, 'rb') as f: upload_response = requests.post("https://api.assemblyai.com/v2/upload", headers={"authorization": ASSEMBLYAI_KEY}, data=f) audio_url = upload_response.json()['upload_url'] transcript_response = requests.post("https://api.assemblyai.com/v2/transcript", headers={"authorization": ASSEMBLYAI_KEY}, json={"audio_url": audio_url, "speaker_labels": True, "filter_profanity": True}) transcript_id = transcript_response.json()['id'] while True: result = requests.get(f"https://api.assemblyai.com/v2/transcript/{transcript_id}", headers={"authorization": ASSEMBLYAI_KEY}).json() if result['status'] == 'completed': return result elif result['status'] == 'error': raise Exception(f"AssemblyAI Error: {result.get('error')}") time.sleep(5) except Exception as e: logger.error(f"Transcription failed: {str(e)}") raise def process_utterance(utterance: Dict, full_audio: AudioSegment) -> Dict: # This function is unchanged from your version try: start, end = utterance['start'], utterance['end'] segment = full_audio[start:end] with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp: segment.export(tmp.name, format="wav") with torch.no_grad(): embedding = speaker_model.get_embedding(tmp.name).cpu().numpy() os.remove(tmp.name) embedding_list = embedding.flatten().tolist() query_result = index.query(vector=embedding_list, top_k=1, include_metadata=True) if query_result['matches'] and query_result['matches'][0]['score'] > 0.75: speaker_id = query_result['matches'][0]['id'] speaker_name = query_result['matches'][0]['metadata']['speaker_name'] else: speaker_id = f"speaker_{uuid.uuid4().hex[:6]}" speaker_name = f"Speaker_{speaker_id[-4:].upper()}" index.upsert([(speaker_id, embedding_list, {"speaker_name": speaker_name})]) return {**utterance, 'speaker': speaker_name, 'speaker_id': speaker_id} except Exception as e: logger.error(f"Utterance processing failed: {str(e)}") return {**utterance, 'speaker': 'Unknown', 'speaker_id': 'unknown'} def identify_speakers(transcript: Dict, wav_file: str) -> List[Dict]: # This function is unchanged from your version try: full_audio = AudioSegment.from_wav(wav_file) utterances = transcript.get('utterances', []) with ThreadPoolExecutor(max_workers=5) as executor: futures = [executor.submit(process_utterance, u, full_audio) for u in utterances] results = [f.result() for f in futures] return results except Exception as e: logger.error(f"Speaker identification failed: {str(e)}") raise def classify_roles(utterances: List[Dict]) -> List[Dict]: # Using simple alternating logic as per your decision to pause on training a custom model results = [] for i, utterance in enumerate(utterances): utterance['role'] = 'Interviewer' if i % 2 == 0 else 'Interviewee' results.append(utterance) return results def analyze_interviewee_voice(audio_path: str, utterances: List[Dict]) -> Dict: # This function is unchanged from your version try: y, sr = librosa.load(audio_path, sr=16000) interviewee_utterances = [u for u in utterances if u.get('role') == 'Interviewee'] if not interviewee_utterances: return {'error': 'No interviewee utterances found'} segments = [y[int(u['start']*sr/1000):int(u['end']*sr/1000)] for u in interviewee_utterances if u['end'] > u['start']] if not segments: return {'error': 'No valid audio segments found'} total_duration = sum(u['prosodic_features']['duration'] for u in interviewee_utterances) total_words = sum(len(u['text'].split()) for u in interviewee_utterances) speaking_rate = total_words / total_duration if total_duration > 0 else 0 filler_words = ['um', 'uh', 'like', 'you know', 'so', 'i mean'] filler_count = sum(sum(u['text'].lower().count(fw) for fw in filler_words) for u in interviewee_utterances) filler_ratio = filler_count / total_words if total_words > 0 else 0 pitches, intensities = [], [] for segment in segments: if len(segment) == 0: continue f0, voiced_flag, _ = librosa.pyin(segment, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), sr=sr) pitches.extend(f0[voiced_flag]) intensities.extend(librosa.feature.rms(y=segment)[0]) pitch_mean = float(np.mean(pitches)) if len(pitches) > 0 else 0.0 intensity_std = float(np.std(intensities)) if len(intensities) > 0 else 0.0 jitter = float(np.mean(np.abs(np.diff(pitches))) / pitch_mean) if len(pitches) > 1 and pitch_mean > 0 else 0.0 shimmer = float(np.mean(np.abs(np.diff(intensities))) / np.mean(intensities)) if len(intensities) > 1 and np.mean(intensities) > 0 else 0.0 anxiety_score = 0.6 * (np.std(pitches)/pitch_mean if pitch_mean > 0 else 0) + 0.4 * (jitter + shimmer) confidence_score = 0.7 * (1/(1+intensity_std)) + 0.3 * (1-filler_ratio) return { 'speaking_rate': round(speaking_rate, 2), 'filler_ratio': round(filler_ratio, 3), 'composite_scores': {'anxiety': round(anxiety_score, 3), 'confidence': round(confidence_score, 3)}, 'interpretation': { 'anxiety_level': 'High' if anxiety_score > 0.15 else 'Moderate' if anxiety_score > 0.07 else 'Low', 'confidence_level': 'High' if confidence_score > 0.75 else 'Moderate' if confidence_score > 0.5 else 'Low', 'fluency_level': 'Fluent' if filler_ratio < 0.05 else 'Moderate' } } except Exception as e: logger.error(f"Voice analysis failed: {str(e)}") return {'error': str(e)} def calculate_acceptance_probability(analysis_data: Dict) -> float: # This is your custom, detailed function voice = analysis_data.get('voice_analysis', {}) if 'error' in voice: return 50.0 w_confidence, w_anxiety, w_fluency, w_speaking_rate, w_filler_repetition, w_content_strengths = 0.35, -0.25, 0.2, 0.15, -0.15, 0.25 confidence_score = voice.get('composite_scores', {}).get('confidence', 0.0) anxiety_score = voice.get('composite_scores', {}).get('anxiety', 0.0) fluency_level = voice.get('interpretation', {}).get('fluency_level', 'Disfluent') speaking_rate = voice.get('speaking_rate', 0.0) filler_ratio = voice.get('filler_ratio', 0.0) repetition_score = voice.get('repetition_score', 0.0) fluency_map = {'Fluent': 1.0, 'Moderate': 0.6, 'Disfluent': 0.2} fluency_val = fluency_map.get(fluency_level, 0.2) ideal_speaking_rate = 2.5 speaking_rate_deviation = abs(speaking_rate - ideal_speaking_rate) speaking_rate_score = max(0, 1 - (speaking_rate_deviation / ideal_speaking_rate)) filler_repetition_composite = (filler_ratio + repetition_score) / 2 filler_repetition_score = max(0, 1 - filler_repetition_composite) content_strength_val = 0.85 if analysis_data.get('text_analysis', {}).get('total_duration', 0) > 60 else 0.4 raw_score = (confidence_score * w_confidence + (1 - anxiety_score) * abs(w_anxiety) + fluency_val * w_fluency + speaking_rate_score * w_speaking_rate + filler_repetition_score * abs(w_filler_repetition) + content_strength_val * w_content_strengths) max_possible_score = (w_confidence + abs(w_anxiety) + w_fluency + w_speaking_rate + abs(w_filler_repetition) + w_content_strengths) normalized_score = raw_score / max_possible_score if max_possible_score > 0 else 0.5 acceptance_probability = max(0.0, min(1.0, normalized_score)) return float(f"{acceptance_probability * 100:.2f}") def convert_to_serializable(obj): # This function is unchanged if isinstance(obj, np.generic): return obj.item() if isinstance(obj, dict): return {k: convert_to_serializable(v) for k, v in obj.items()} if isinstance(obj, list): return [convert_to_serializable(i) for i in obj] if isinstance(obj, np.ndarray): return obj.tolist() return obj # --- NEW: HR Persona Report Generation --- def generate_report(analysis_data: Dict, user_id: str) -> str: try: voice = analysis_data.get('voice_analysis', {}) voice_interpretation = "Voice analysis data was not available." if voice and 'error' not in voice: voice_interpretation = ( f"The candidate's voice profile indicates a '{voice.get('interpretation', {}).get('confidence_level', 'N/A').upper()}' confidence level " f"and a '{voice.get('interpretation', {}).get('anxiety_level', 'N/A').upper()}' anxiety level. " f"Fluency was rated as '{voice.get('interpretation', {}).get('fluency_level', 'N/A').upper()}'." ) prob = analysis_data.get('acceptance_probability') prompt = f""" **Persona:** You are a Senior HR Partner writing a candidate evaluation memo for the hiring manager. **Task:** Write a professional, objective, and concise evaluation based on the data below. **Tone:** Analytical and formal. **CANDIDATE EVALUATION MEMORANDUM** **CONFIDENTIAL** **Candidate ID:** {user_id} **Analysis Date:** {time.strftime('%Y-%m-%d')} **Estimated Suitability Score:** {prob:.2f}% **1. Overall Recommendation:** Provide a clear, one-sentence recommendation (e.g., "Highly recommend proceeding to the final round," "Recommend with reservations," or "Do not recommend at this time."). Briefly justify the recommendation. **2. Communication & Presentation Style:** - Evaluate the candidate's communication style based on vocal delivery (confidence, clarity, potential nervousness). - **Data for Analysis:** {voice_interpretation} **3. Actionable Next Steps:** - Suggest specific questions or topics for the next interviewer to focus on. - If not recommending, provide a concise, constructive reason. """ response = gemini_model.generate_content(prompt) return response.text except Exception as e: logger.error(f"Report generation failed: {str(e)}") return f"Error generating report: {str(e)}" # --- NEW: Polished PDF Creation --- def create_pdf_report(analysis_data: Dict, output_path: str, gemini_report_text: str): try: doc = SimpleDocTemplate(output_path, pagesize=letter, rightMargin=0.75*inch, leftMargin=0.75*inch, topMargin=1.2*inch, bottomMargin=1*inch) styles = getSampleStyleSheet() h1 = ParagraphStyle(name='Heading1', fontSize=18, leading=22, spaceAfter=12, alignment=1, textColor=colors.HexColor('#00205B'), fontName='Helvetica-Bold') h2 = ParagraphStyle(name='Heading2', fontSize=14, leading=18, spaceBefore=12, spaceAfter=8, textColor=colors.HexColor('#003366'), fontName='Helvetica-Bold') body_text = ParagraphStyle(name='BodyText', parent=styles['Normal'], fontSize=10, leading=14, spaceAfter=6, fontName='Helvetica') story = [] def header_footer(canvas, doc): canvas.saveState() canvas.setFont('Helvetica', 9) canvas.setFillColor(colors.grey) canvas.drawString(doc.leftMargin, 0.5 * inch, f"Page {doc.page} | EvalBot Confidential Report") canvas.restoreState() # Simple renderer for markdown-like text from Gemini # It converts **bold** to bold and newlines to
formatted_text = gemini_report_text.replace('\n', '
') formatted_text = re.sub(r'\*\*(.*?)\*\*', r'\1', formatted_text) lines = formatted_text.split('
') for line in lines: line = line.strip() if not line: story.append(Spacer(1, 8)) continue # Use heading style for lines that look like headings (bolded and short) if line.startswith('') and len(line) < 100: story.append(Paragraph(line, h2)) else: story.append(Paragraph(line, body_text)) doc.build(story, onFirstPage=header_footer, onLaterPages=header_footer) return True except Exception as e: logger.error(f"PDF creation failed: {str(e)}", exc_info=True) return False # --- MAIN ORCHESTRATOR FUNCTION --- def process_interview(audio_url: str, user_id: str) -> Dict: local_audio_path = None wav_file = None is_downloaded = False try: logger.info(f"Starting processing for user '{user_id}' URL: {audio_url}") local_audio_path = download_audio_from_url(audio_url) is_downloaded = True wav_file = convert_to_wav(local_audio_path) transcript = transcribe(wav_file) if 'utterances' not in transcript or not transcript['utterances']: raise ValueError("Transcription returned no utterances.") for u in transcript['utterances']: u['prosodic_features'] = extract_prosodic_features(wav_file, u['start'], u['end']) utterances_with_speakers = identify_speakers(transcript, wav_file) # Using alternating role classification as decided for i, u in enumerate(utterances_with_speakers): u['role'] = 'Interviewer' if i % 2 == 0 else 'Interviewee' classified_utterances = utterances_with_speakers voice_analysis = analyze_interviewee_voice(wav_file, classified_utterances) # We removed the separate content analysis and integrated it into the Gemini prompt analysis_data = { 'user_id': user_id, 'transcript': classified_utterances, 'speakers': list(set(u['speaker'] for u in classified_utterances if u['speaker'] != 'Unknown')), 'voice_analysis': voice_analysis, 'text_analysis': { 'total_duration': sum(u.get('prosodic_features',{}).get('duration',0) for u in classified_utterances), 'speaker_turns': len(classified_utterances) } } analysis_data['acceptance_probability'] = calculate_acceptance_probability(analysis_data) gemini_report_text = generate_report(analysis_data, user_id) base_name = str(uuid.uuid4()) # We will now generate only one professional PDF report company_pdf_path = os.path.join(OUTPUT_DIR, f"{base_name}_company_report.pdf") json_path = os.path.join(OUTPUT_DIR, f"{base_name}_analysis.json") create_pdf_report(analysis_data, company_pdf_path, gemini_report_text) with open(json_path, 'w') as f: json.dump(convert_to_serializable(analysis_data), f, indent=2) logger.info(f"Processing completed for {audio_url}") return { 'company_pdf_path': company_pdf_path, 'json_path': json_path, 'pdf_filename': os.path.basename(company_pdf_path), 'json_filename': os.path.basename(json_path) } except Exception as e: logger.error(f"Processing failed for {audio_url}: {str(e)}", exc_info=True) raise finally: if wav_file and os.path.exists(wav_file): try: os.remove(wav_file) except Exception as e: logger.error(f"Failed to clean up wav file {wav_file}: {str(e)}") if is_downloaded and local_audio_path and os.path.exists(local_audio_path): try: os.remove(local_audio_path) logger.info(f"Cleaned up temporary file: {local_audio_path}") except Exception as e: logger.error(f"Failed to clean up local audio file {local_audio_path}: {str(e)}")